


Apakah Perbezaan Antara Bentuk Array NumPy (R, 1) dan (R,)?
Perbezaan Antara Bentuk Tatasusunan NumPy (R, 1) dan (R,)
Dalam NumPy, tatasusunan boleh mempunyai bentuk yang berbeza secara halus, seperti (R, 1) dan (R,). Bentuk ini mungkin kelihatan serupa, tetapi terdapat perbezaan asas dalam cara ia ditafsir dan diproses.
1. Memahami Struktur Tatasusunan
Tatasusunan NumPy terdiri daripada penimbal data dan pandangan. Penampan data menyimpan elemen data mentah, manakala paparan menerangkan cara mentafsir data. Bentuk adalah sebahagian daripada pandangan dan menentukan berapa banyak dimensi dan elemen tatasusunan.
Bentuk (R, 1) dan (R,)
- (R, 1): Bentuk ini mewakili tatasusunan dengan baris R dan 1 lajur. Ia berkelakuan seperti tatasusunan satu dimensi tetapi mempunyai dimensi tambahan bersaiz 1.
- (R,): Bentuk ini mewakili tatasusunan dengan baris R sahaja. Ia berkelakuan seperti tatasusunan satu dimensi sebenar tanpa sebarang dimensi tambahan.
2. Sebab Bentuk Berbeza
NumPy telah memilih untuk menyokong kedua-dua bentuk atas sebab sejarah dan untuk memberikan fleksibiliti dalam operasi tertentu. Sesetengah operasi menjangkakan atau menghasilkan tatasusunan dengan bentuk tertentu, membawa kepada gelagat berbeza bergantung pada bentuk input.
3. Implikasi untuk Pendaraban Matriks
Dalam contoh anda, numpy.dot(M[:,0], numpy.ones((1, R))), bentuk boleh menyebabkan masalah. M[:,0] mempunyai bentuk (R,) manakala numpy.ones((1, R)) mempunyai bentuk (1, R), yang membawa kepada ralat penjajaran. Untuk menyelesaikan masalah ini, anda boleh membentuk semula M[:,0] secara eksplisit kepada (R, 1).
4. Amalan Terbaik
Walaupun tiada keutamaan yang ketat antara (R, 1) dan (R,), ia biasanya disyorkan untuk menggunakan (R, 1) apabila tatasusunan secara logiknya satu dimensi tetapi memerlukan tambahan dimensi untuk operasi tertentu. Berhati-hati dengan bentuk yang diharapkan dalam mana-mana fungsi yang anda gunakan untuk mengelakkan ralat.
Pendekatan Alternatif
Dalam contoh anda, anda juga boleh mempertimbangkan alternatif berikut untuk mengelakkan pembentukan semula:
- numpy.dot(M.T, numpy.ones((R, 1)))
- M.sum(paksi=0).bentuk semula((R, 1))
Atas ialah kandungan terperinci Apakah Perbezaan Antara Bentuk Array NumPy (R, 1) dan (R,)?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
