


Bagaimana untuk Mengemas kini Secara Dinamik dan Memaparkan Data Distrim daripada Paparan Kelalang?
Memaparkan Data yang Distrim daripada Flask View semasa Ia Kemas Kini
Pengenalan
Dalam aplikasi Flask, ia selalunya wajar untuk dipaparkan data yang dijana atau dikemas kini dalam masa nyata. Walaupun Flask mempunyai sokongan terbina dalam untuk respons penstriman, memasukkan data ini ke dalam templat HTML boleh menjadi mencabar. Artikel ini meneroka cara mengemas kini, memformat dan memaparkan data secara dinamik semasa ia distrim ke halaman.
Menstrim data dalam Flask
Untuk menstrim data dalam Flask, anda boleh menggunakan penjana sebagai tindak balas kepada laluan. Setiap kali tindak balas diulang, penjana menghasilkan sebahagian daripada data kepada pelanggan. Contohnya:
@app.route('/') def index(): def inner(): for i in range(500): # simulate a long process to watch j = math.sqrt(i) time.sleep(1) # this value should be inserted into an HTML template yield str(i) + '<br/>\n' return flask.Response(inner(), mimetype='text/html')
Kod ini mensimulasikan proses yang berjalan lama yang menjana nilai setiap saat. Nilai ini kemudiannya distrim ke respons sebagai serpihan HTML.
Mengendalikan data yang distrim dalam JavaScript
Sementara Flask menyokong respons penstriman, templat HTML dipaparkan sekali pada bahagian pelayan dan tidak boleh dikemas kini secara dinamik. Untuk mengendalikan data yang distrim dalam penyemak imbas, anda boleh menggunakan JavaScript untuk membuat permintaan ke titik akhir dan memproses data yang distrim apabila ia tiba.
Satu pendekatan ialah menggunakan objek XMLHttpRequest (XHR) untuk membuat permintaan untuk titik akhir penstriman. Anda kemudian boleh периодически membaca data daripada respons sehingga ia selesai. Berikut ialah contoh:
var xhr = new XMLHttpRequest(); xhr.open('GET', '{{ url_for('stream') }}'); xhr.send(); var position = 0; function handleNewData() { // the response text includes the entire response so far // split the messages, then take the messages that haven't been handled yet // position tracks how many messages have been handled // messages end with a newline, so split will always show one extra empty message at the end var messages = xhr.responseText.split('\n'); messages.slice(position, -1).forEach(function(value) { // Update the displayed data using JavaScript latest.textContent = value; // update the latest value in place // Append the current value to a list to log all output var item = document.createElement('li'); item.textContent = value; output.appendChild(item); }); position = messages.length - 1; } // Check for new data periodically var timer; timer = setInterval(function() { // check the response for new data handleNewData(); // stop checking once the response has ended if (xhr.readyState == XMLHttpRequest.DONE) { clearInterval(timer); latest.textContent = 'Done'; } }, 1000);
Kod JavaScript ini menggunakan objek XMLHttpRequest untuk membuat permintaan ke titik akhir penstriman. Ia kemudian menyediakan pemasa untuk menyemak data baharu secara berkala dan mengemas kini halaman dengan sewajarnya.
Menggunakan iframe untuk output HTML yang distrim
Satu lagi pendekatan untuk memaparkan data yang distrim daripada paparan Flask adalah menggunakan iframe. Iframe ialah dokumen berasingan yang boleh digunakan untuk memaparkan output HTML yang distrim. Berikut ialah contoh:
@app.route('/stream') def stream(): @stream_with_context def generate(): # Serve initial CSS to style the iframe yield render_template_string('<link rel=stylesheet href="{{ url_for("static", filename="stream.css") }}">') # Continuously stream HTML content within the iframe for i in range(500): yield render_template_string('<p>{{ i }}: {{ s }}</p>\n', i=i, s=sqrt(i)) sleep(1) return app.response_class(generate())
<p>This is all the output:</p> <iframe src="{{ url_for('stream') }}"></iframe>
Kod ini menggunakan penghias stream_with_context untuk meningkatkan penjana bagi menyokong fungsi tambahan. Ia menyediakan CSS awal untuk menggayakan iframe dan terus menstrim kandungan HTML dalam iframe. Templat HTML dalam iframe boleh menjadi lebih kompleks dan boleh memasukkan pemformatan berbeza mengikut keperluan.
Atas ialah kandungan terperinci Bagaimana untuk Mengemas kini Secara Dinamik dan Memaparkan Data Distrim daripada Paparan Kelalang?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
