Jadual Kandungan
Gabungkan Bingkai Data mengikut Keadaan Julat dalam Panda
Rumah pembangunan bahagian belakang Tutorial Python Bagaimana untuk Menggabungkan DataFrames mengikut Keadaan Julat dalam Pandas Menggunakan Numpy Broadcasting?

Bagaimana untuk Menggabungkan DataFrames mengikut Keadaan Julat dalam Pandas Menggunakan Numpy Broadcasting?

Oct 31, 2024 am 09:33 AM

How to Merge DataFrames by Range Condition in Pandas Using Numpy Broadcasting?

Gabungkan Bingkai Data mengikut Keadaan Julat dalam Panda

Dalam bidang analisis data, menggabungkan data daripada pelbagai sumber ialah tugas biasa. Pandas, perpustakaan Python yang berkuasa untuk manipulasi data, menyediakan pelbagai kaedah untuk menggabungkan bingkai data, termasuk keadaan julat. Artikel ini menyelidiki senario khusus ini dan membentangkan penyelesaian yang cekap menggunakan penyiaran numpy.

Penerangan Masalah

Memandangkan dua bingkai data, A dan B, matlamatnya adalah untuk melaksanakan inner join di mana nilai dalam bingkai data A berada dalam julat tertentu yang ditakrifkan dalam bingkai data B. Secara tradisinya, ini akan dicapai menggunakan sintaks SQL:

<code class="sql">SELECT *
FROM A, B
WHERE A_value BETWEEN B_low AND B_high</code>
Salin selepas log masuk

Penyelesaian Sedia Ada

Panda menawarkan penyelesaian menggunakan lajur tiruan, bergabung pada lajur tiruan, dan kemudian menapis baris yang tidak diperlukan. Walau bagaimanapun, kaedah ini adalah berat dari segi pengiraan. Sebagai alternatif, seseorang boleh menggunakan fungsi carian untuk setiap nilai A pada B, tetapi pendekatan ini juga mempunyai kelemahan.

Penyiaran Numpy: Pendekatan Pragmatik

Penyiaran Numpy menyediakan penyelesaian yang elegan dan cekap. Teknik ini memanfaatkan kevektoran untuk melakukan pengiraan pada keseluruhan tatasusunan dan bukannya elemen individu. Untuk mencapai gabungan yang diingini:

  1. Ekstrak nilai daripada bingkai data A dan B.
  2. Gunakan penyiaran numpy untuk mencipta topeng boolean:

    • A_value >= B_low
    • A_value <= B_high
  3. Gunakan np.where numpy untuk mencari indeks di mana topeng adalah True.
  4. Concatenate baris yang sepadan daripada bingkai data A dan B berdasarkan indeks yang dikenal pasti.

Pendekatan ini menggunakan penyiaran untuk melaksanakan perbandingan julat pada keseluruhan bingkai data A, dengan ketara mengurangkan masa dan kerumitan pengiraan.

Contoh

Pertimbangkan rangka data berikut:

<code class="python">A = pd.DataFrame(dict(
    A_id=range(10),
    A_value=range(5, 105, 10)
))
B = pd.DataFrame(dict(
    B_id=range(5),
    B_low=[0, 30, 30, 46, 84],
    B_high=[10, 40, 50, 54, 84]
))</code>
Salin selepas log masuk

Output:

   A_id  A_value  B_high  B_id  B_low
0     0        5      10     0      0
1     3       35      40     1     30
2     3       35      50     2     30
3     4       45      50     2     30
Salin selepas log masuk

Output ini menunjukkan kejayaan gabungan bingkai data A dan B berdasarkan keadaan julat yang ditentukan.

Pertimbangan Tambahan

Untuk melakukan cantuman kiri, masukkan baris yang tidak sepadan daripada bingkai data A dalam output. Ini boleh dicapai dengan menggunakan ~np.in1d ​​numpy untuk mengenal pasti baris yang tidak sepadan dan menambahkannya pada hasilnya.

Kesimpulannya, penyiaran numpy menawarkan pendekatan yang mantap dan cekap untuk menggabungkan bingkai data berdasarkan keadaan julat. Keupayaan vektorisasinya meningkatkan prestasi, menjadikannya penyelesaian ideal untuk set data yang besar.

Atas ialah kandungan terperinci Bagaimana untuk Menggabungkan DataFrames mengikut Keadaan Julat dalam Pandas Menggunakan Numpy Broadcasting?. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

<🎜>: Bubble Gum Simulator Infinity - Cara Mendapatkan dan Menggunakan Kekunci Diraja
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Nordhold: Sistem Fusion, dijelaskan
4 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Cara Membuka Kunci Cangkuk Bergelut
3 minggu yang lalu By 尊渡假赌尊渡假赌尊渡假赌

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1672
14
Tutorial PHP
1276
29
Tutorial C#
1256
24
Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Pembelajaran Python: Adakah 2 jam kajian harian mencukupi? Apr 18, 2025 am 12:22 AM

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python vs C: Meneroka Prestasi dan Kecekapan Python vs C: Meneroka Prestasi dan Kecekapan Apr 18, 2025 am 12:20 AM

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python vs C: Memahami perbezaan utama Python vs C: Memahami perbezaan utama Apr 21, 2025 am 12:18 AM

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Yang merupakan sebahagian daripada Perpustakaan Standard Python: Senarai atau Array? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary, sementara

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Python untuk pengkomputeran saintifik: rupa terperinci Python untuk pengkomputeran saintifik: rupa terperinci Apr 19, 2025 am 12:15 AM

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Python untuk Pembangunan Web: Aplikasi Utama Python untuk Pembangunan Web: Aplikasi Utama Apr 18, 2025 am 12:20 AM

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak

See all articles