


Menggunakan API Web untuk FLUX [pro]: Model AI Penjanaan Imej Terkini oleh Pasukan Asal Penyebaran Stabil
pengenalan
Sebelum ini, saya menulis artikel bertajuk "Menjalankan Model AI Generasi Imej FLUX.1 ([dev]/[schnell]) oleh Pembangun Asal Stable Diffusion pada MacBook (M2)." Ia menunjukkan model penjanaan imej FLUX.1 daripada Black Forest Labs, yang diasaskan oleh pencipta Stable Diffusion.
Kini, dua bulan kemudian, FLUX 1.1 [pro] (nama kod Blueberry) telah dikeluarkan, bersama-sama dengan akses awam kepada API webnya, walaupun masih dalam versi beta.
Hari ini, kami mengeluarkan FLUX1.1 [pro], model kami yang paling maju dan cekap, di samping ketersediaan umum API BFL beta. Keluaran ini menandakan satu langkah ke hadapan yang penting dalam misi kami untuk memperkasakan pencipta, pembangun dan perusahaan dengan teknologi generatif yang boleh skala dan terkini.
Rujukan: Mengumumkan FLUX1.1 [pro] dan BFL API - Black Forest Labs
Dalam siaran ini, saya akan menunjukkan cara menggunakan API web FLUX 1.1 [pro].
Semua contoh kod ditulis dalam Python.
Mencipta Akaun dan Kunci API
Mulakan dengan mendaftar akaun dan log masuk pada halaman API di bawah pilihan Daftar.
Kredit berharga $0.01 setiap satu, dan saya menerima 50 kredit semasa pendaftaran (ini mungkin berbeza-beza).
Berdasarkan halaman Harga, kos model adalah seperti berikut:
- FLUX 1.1 [pro]: $0.04 setiap imej
- FLUX.1 [pro]: $0.05 setiap imej
- FLUX.1 [dev]: $0.025 setiap imej
Setelah anda log masuk, jana kunci API dengan memilih Tambah Kunci dan masukkan nama pilihan anda.
Kunci anda akan muncul seperti yang ditunjukkan di bawah.
Persediaan Persekitaran
Saya menggunakan macOS 14 Sonoma sebagai sistem pengendalian saya.
Versi Python ialah:
$ python --version Python 3.12.2
Untuk menjalankan kod sampel, saya memasang permintaan:
$ pip install requests
Saya mengesahkan versi yang dipasang:
$ pip list | grep -e requests requests 2.31.0
Untuk mengelakkan pengekodan keras, saya menyimpan kunci API sebagai pembolehubah persekitaran dengan mengedit fail zshrc.
$ open ~/.zshrc
Saya menamakan pembolehubah persekitaran BFL_API_KEY:
export BFL_API_KEY=<Your API Key Here>
Contoh Kod
Di bawah ialah kod sampel daripada Bermula, dengan beberapa ulasan tambahan. Sebaik-baiknya, ia harus mengendalikan ralat menggunakan status, tetapi saya membiarkannya tidak berubah untuk kesederhanaan.
import os import requests import time # Request request = requests.post( 'https://api.bfl.ml/v1/flux-pro-1.1', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), 'Content-Type': 'application/json', }, json={ 'prompt': 'A cat on its back legs running like a human is holding a big silver fish with its arms. The cat is running away from the shop owner and has a panicked look on his face. The scene is situated in a crowded market.', 'width': 1024, 'height': 768, }, ).json() print(request) request_id = request["id"] # Wait for completion while True: time.sleep(0.5) result = requests.get( 'https://api.bfl.ml/v1/get_result', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), }, params={ 'id': request_id, }, ).json() if result["status"] == "Ready": print(f"Result: {result['result']['sample']}") break else: print(f"Status: {result['status']}")
Dalam contoh ini, gesaannya ialah:
Kucing di kaki belakangnya berlari seperti manusia sedang memegang ikan perak besar dengan tangannya. Kucing itu melarikan diri dari pemilik kedai dan wajahnya kelihatan panik. Tempat kejadian terletak di pasar yang sesak.
Format keputusan akhir kelihatan seperti ini. Masa tindak balas adalah lebih pantas berbanding dengan API lain yang telah saya uji.
$ python --version Python 3.12.2
sampel mengandungi URL imej yang dijana, yang dihoskan pada bflapistorage.blob.core.windows.net semasa saya mengujinya.
Berikut ialah imej yang dijana:
Hasilnya hampir sepadan dengan gesaan, menangkap rasa terdesak.
Bereksperimen dengan Gesaan Alternatif
Saya mencuba gesaan yang berbeza untuk menghasilkan imej yang pelbagai.
Heroin Moe Jepun
Gesaan: "Srikandi moe Jepun," menggunakan gaya anime.
$ pip install requests
Gula-gula dari Anime Jepun Popular
Prompt: "Gula-gula yang muncul dalam anime Jepun popular," menggunakan gaya anime.
$ pip list | grep -e requests requests 2.31.0
Pelajar Sekolah Menengah Lelaki dalam Lawatan Sekolah
Gesaan: "Pelajar sekolah menengah lelaki dalam perjalanan sekolah," menggunakan gaya anime.
$ open ~/.zshrc
Puteri Bermain Gitar
Gesaan: "Seorang puteri bermain gitar," menggunakan gaya seni fantasi.
export BFL_API_KEY=<Your API Key Here>
Peri Comel di Atas Komputer Riba Putih
Prompt: "Seorang pari-pari comel di atas komputer riba putih," menggunakan gaya fotografi.
import os import requests import time # Request request = requests.post( 'https://api.bfl.ml/v1/flux-pro-1.1', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), 'Content-Type': 'application/json', }, json={ 'prompt': 'A cat on its back legs running like a human is holding a big silver fish with its arms. The cat is running away from the shop owner and has a panicked look on his face. The scene is situated in a crowded market.', 'width': 1024, 'height': 768, }, ).json() print(request) request_id = request["id"] # Wait for completion while True: time.sleep(0.5) result = requests.get( 'https://api.bfl.ml/v1/get_result', headers={ 'accept': 'application/json', 'x-key': os.environ.get("BFL_API_KEY"), }, params={ 'id': request_id, }, ).json() if result["status"] == "Ready": print(f"Result: {result['result']['sample']}") break else: print(f"Status: {result['status']}")
Wanita Jepun Berusia 28 Tahun Berambut Bobbed Hitam
Prompt: "Wanita cantik Jepun berusia 28 tahun dengan rambut bob hitam," menggunakan gaya fotografi.
$ python --version Python 3.12.2
Pusat Bandar Hong Kong pada tahun 1980-an
Prompt: "Pusat bandar Hong Kong pada tahun 1980-an," menggunakan gaya fotografi.
$ pip install requests
Shinjuku Kabukicho pada tahun 2020
Gesaan: "Shinjuku Kabukicho pada 2020," menggunakan gaya fotografi.
$ pip list | grep -e requests requests 2.31.0
Semua imej yang dijana adalah berkualiti luar biasa.
Selepas menjana begitu banyak imej AI berkualiti tinggi, realiti hampir terasa nyata.
Kesimpulan
Black Forest Labs terus berinovasi dan mempertingkatkan model AInya.
Saya menantikan keluaran keupayaan penjanaan video pada masa hadapan.
Artikel Asal Jepun
Stable Diffusionのオリジナル開発陣による画像生成AIモデル最新版 FLUX 1.1 [pro]のWebこ画を像を生成してみた
Atas ialah kandungan terperinci Menggunakan API Web untuk FLUX [pro]: Model AI Penjanaan Imej Terkini oleh Pasukan Asal Penyebaran Stabil. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.

Aplikasi utama Python dalam pembangunan web termasuk penggunaan kerangka Django dan Flask, pembangunan API, analisis data dan visualisasi, pembelajaran mesin dan AI, dan pengoptimuman prestasi. 1. Rangka Kerja Django dan Flask: Django sesuai untuk perkembangan pesat aplikasi kompleks, dan Flask sesuai untuk projek kecil atau sangat disesuaikan. 2. Pembangunan API: Gunakan Flask atau DjangorestFramework untuk membina Restfulapi. 3. Analisis Data dan Visualisasi: Gunakan Python untuk memproses data dan memaparkannya melalui antara muka web. 4. Pembelajaran Mesin dan AI: Python digunakan untuk membina aplikasi web pintar. 5. Pengoptimuman Prestasi: Dioptimumkan melalui pengaturcaraan, caching dan kod tak segerak
