


Perangkap prestasi: perpustakaan umum & objek pembantu
Kemudahan dan prestasi biasanya berkorelasi songsang. Jika kod itu mudah digunakan, ia kurang dioptimumkan. Jika ia dioptimumkan, ia kurang mudah. Kod yang cekap perlu mendekati butiran terperinci tentang perkara yang sebenarnya sedang dijalankan, bagaimana.
Saya menemui contoh dalam kerja berterusan kami untuk menjalankan & mengoptimumkan segmentasi selular DeepCell untuk penyelidikan kanser. Model DeepCell AI meramalkan piksel mana yang berkemungkinan besar berada dalam sel. Dari situ, kami "membanjiri" daripada piksel yang paling berkemungkinan, sehingga mencapai sempadan sel (di bawah beberapa ambang).
Sebahagian daripada proses ini melibatkan melicinkan celah kecil di dalam sel yang diramalkan, yang boleh berlaku atas pelbagai sebab tetapi tidak mungkin secara biologi. (Fikirkan lubang donat, bukan membran berliang sel.)
Algoritma pengisian lubang adalah seperti ini:
- Kenal pasti objek (piksel bersebelahan dengan label sel tertentu dengan id angka yang sama).
- Hitung "nombor Euler" sel ini, ukuran permukaan bentuk.
- Jika Nombor Euler kurang daripada 1 (aka permukaannya mempunyai celah), ratakan lubang tersebut.
Berikut ialah contoh nombor Euler daripada artikel Wikipedia; bulatan (hanya bahagian garisan) mempunyai ciri Euler sifar manakala cakera (bulatan "diisi") mempunyai nilai 1.
Kami di sini bukan untuk bercakap tentang mentakrifkan atau mengira nombor Euler. Kita akan bercakap tentang cara laluan mudah perpustakaan untuk mengira nombor Euler agak tidak cekap.
Perkara pertama dahulu. Kami melihat masalah itu dengan melihat profil ini menggunakan Speedscope:
Ia menunjukkan ~32ms (~15%) dibelanjakan dalam regionprops. Paparan ini berat sebelah kiri, jika kita pergi ke paparan garis masa dan zum masuk, kita mendapat ini:
(Perhatikan bahawa kami melakukan ini dua kali, oleh itu ~16ms di sini dan ~16ms di tempat lain, tidak ditunjukkan.)
Ini segera disyaki: bahagian "menarik" untuk mencari objek dengan find_objects ialah sekerat pertama, 0.5ms. Ia mengembalikan senarai tupel, bukan penjana, jadi apabila ia selesai ia selesai. Jadi apa jadi dengan semua perkara lain? Kami sedang membina objek RegionProperties. Mari zum masuk pada salah satu daripadanya.
Sekerat kecil (yang kami tidak akan zum masuk) ialah panggilan __setattr__ tersuai: objek RegionProperties menyokong pengaliansi, contohnya jika anda menetapkan atribut ConvexArea ia mengubah hala ke area_convex atribut standard. Walaupun kami tidak menggunakannya, kami masih melalui penukar atribut.
Tambahan pula: kami tidak menggunakan kebanyakan sifat yang dikira dalam sifat wilayah. Kami hanya mementingkan nombor Euler:
props = regionprops(np.squeeze(label_img.astype('int')), cache=False) for prop in props: if prop.euler_number < 1:
sebaliknya, ia hanya menggunakan aspek paling asas bagi sifat rantau: kawasan imej yang dikesan oleh find_objects (kepingan imej asal).
Jadi, kami menukar kod kepada kod fill_holes untuk memintas sahaja fungsi tujuan am regionprops. Sebaliknya, kami memanggil find_objects dan menghantar subkawasan imej yang terhasil kepada fungsi euler_number (bukan kaedah pada objek RegionProperties).
Berikut ialah permintaan tarik: deepcell-imaging#358 Langkau pembinaan regionprops
Dengan melangkau objek perantaraan, kami mendapat peningkatan prestasi yang baik untuk operasi fill_holes:
Image size | Before | After | Speedup |
---|---|---|---|
260k pixels | 48ms | 40ms | 8ms (17%) |
140M pixels | 15.6s | 11.7s | 3.9s (25%) |
Untuk imej yang lebih besar, 4s ialah ~3% daripada keseluruhan masa jalan– bukan sebahagian besarnya, tetapi juga tidak terlalu lusuh.
Atas ialah kandungan terperinci Perangkap prestasi: perpustakaan umum & objek pembantu. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python lebih baik daripada C dalam kecekapan pembangunan, tetapi C lebih tinggi dalam prestasi pelaksanaan. 1. Sintaks ringkas Python dan perpustakaan yang kaya meningkatkan kecekapan pembangunan. 2. Ciri-ciri jenis kompilasi dan kawalan perkakasan meningkatkan prestasi pelaksanaan. Apabila membuat pilihan, anda perlu menimbang kelajuan pembangunan dan kecekapan pelaksanaan berdasarkan keperluan projek.

Adakah cukup untuk belajar Python selama dua jam sehari? Ia bergantung pada matlamat dan kaedah pembelajaran anda. 1) Membangunkan pelan pembelajaran yang jelas, 2) Pilih sumber dan kaedah pembelajaran yang sesuai, 3) mengamalkan dan mengkaji semula dan menyatukan amalan tangan dan mengkaji semula dan menyatukan, dan anda secara beransur-ansur boleh menguasai pengetahuan asas dan fungsi lanjutan Python dalam tempoh ini.

Python dan C masing -masing mempunyai kelebihan sendiri, dan pilihannya harus berdasarkan keperluan projek. 1) Python sesuai untuk pembangunan pesat dan pemprosesan data kerana sintaks ringkas dan menaip dinamik. 2) C sesuai untuk prestasi tinggi dan pengaturcaraan sistem kerana menaip statik dan pengurusan memori manual.

Pythonlistsarepartofthestandardlibrary, sementara

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

Aplikasi Python dalam pengkomputeran saintifik termasuk analisis data, pembelajaran mesin, simulasi berangka dan visualisasi. 1.Numpy menyediakan susunan pelbagai dimensi yang cekap dan fungsi matematik. 2. Scipy memanjangkan fungsi numpy dan menyediakan pengoptimuman dan alat algebra linear. 3. Pandas digunakan untuk pemprosesan dan analisis data. 4.Matplotlib digunakan untuk menghasilkan pelbagai graf dan hasil visual.
