Perkemas Bahagian Tulisan dan Elemen Teks
Getting Started with Streamlit: A Beginner's Guide
Code can be found here: GitHub - jamesbmour/blog_tutorials:
Video version of blog can be found here: https://youtu.be/EQcqNW7Nw7M
Introduction
Streamlit is an open-source app framework that allows you to create beautiful, interactive web applications with minimal effort. If you’re a data scientist, machine learning engineer, or anyone working with data, Streamlit is the perfect tool to turn your Python scripts into interactive apps quickly. In this tutorial, we will dive into the basics of Streamlit by exploring some of its powerful features, such as st.write(), magic commands, and text elements.
Let’s get started by building a simple app to demonstrate these functionalities!
Setting Up Your Streamlit Environment
Before we jump into the code, make sure you have Streamlit installed. If you haven't installed it yet, you can do so with the following command:
pip install streamlit
Now, let’s start coding our first Streamlit app.
Building Your First Streamlit App
1. Adding a Title to Your App
Streamlit makes it incredibly easy to add titles and headings to your app. The st.title() function allows you to display a large title at the top of your application, which serves as the main heading.
import streamlit as st st.title("Introduction to Streamlit: Part 1")
This will display a large, bold title at the top of your app.
Streamlit Write Elements
Using st.write() for Versatile Output
The st.write() function is one of the most versatile functions in Streamlit. You can use it to display almost anything, including text, data frames, charts, and more—all with a single line of code.
Displaying a DataFrame
Let's start by displaying a simple DataFrame using st.write().
import pandas as pd df = pd.DataFrame({ "Column 1": [1, 2, 3, 4], "Column 2": [10, 20, 30, 40] }) st.write("DataFrame using st.write() function") st.write(df)
This code creates a DataFrame with two columns and displays it directly in your app. The beauty of st.write() is that it automatically formats the DataFrame into a neat table, complete with scroll bars if needed.
Displaying Markdown Text
Another cool feature of st.write() is its ability to render Markdown text. This allows you to add formatted text, such as headers, subheaders, and paragraphs, with ease.
markdown_txt = ( "### This is a Markdown Header\\n" "#### This is a Markdown Subheader\\n" "This is a Markdown paragraph.\\n" ) st.write(markdown_txt)
With just a few lines of code, you can add rich text to your app.
Streaming Data with st.write_stream()
Streamlit also allows you to stream data to your app in real-time using the st.write_stream() function. This is particularly useful for displaying data that updates over time, such as sensor readings or live analytics.
import time st.write("## Streaming Data using st.write_stream() function") stream_btn = st.button("Click Button to Stream Data") TEXT = """ # Stream a generator, iterable, or stream-like sequence to the app. """ def stream_data(txt="Hello, World!"): for word in txt.split(" "): yield word + " " time.sleep(0.01) if stream_btn: st.write_stream(stream_data(TEXT))
In this example, when the button is clicked, the app will start streaming data word by word from the TEXT string, simulating real-time data updates.
Streamlit Text Elements
In addition to data streaming, Streamlit provides several text elements to enhance the presentation of your app.
Headers and Subheaders
You can easily add headers and subheaders using st.header() and st.subheader():
st.header("This is a Header") st.subheader("This is a Subheader")
These functions help structure your content, making your app more organized and visually appealing.
Captions
Captions are useful for adding small notes or explanations. You can add them using st.caption():
st.caption("This is a caption")
Displaying Code
If you want to display code snippets in your app, you can use st.code():
code_txt = """ import pandas as pd import streamlit as st st.title("Streamlit Tutorials") for i in range(10): st.write(i) """ st.code(code_txt)
This will display the code in a nicely formatted, syntax-highlighted block.
Displaying Mathematical Expressions
For those who need to include mathematical equations, Streamlit supports LaTeX:
st.latex(r"e = mc^2") st.latex(r"\\int_a^b x^2 dx")
These commands will render LaTeX equations directly in your app.
Adding Dividers
To separate different sections of your app, you can use st.divider():
st.write("This is some text below the divider.") st.divider() st.write("This is some other text below the divider.")
Dividers add a horizontal line between sections, helping to break up the content visually.
Conclusion
In this introductory tutorial, we covered the basics of Streamlit, including how to use st.write() to display data and text, and how to stream data using st.write_stream(). We also explored various text elements to enhance the structure and readability of your app.
Streamlit makes it incredibly easy to create interactive web applications with just a few lines of code. Whether you're building dashboards, data exploration tools, or any other data-driven app, Streamlit provides the tools you need to get started quickly.
In the next tutorial, we’ll dive deeper into widgets and interactivity features in Streamlit. Stay tuned!
Jika anda mendapati tutorial ini membantu, jangan lupa untuk berkongsi dan melanggan untuk lebih banyak kandungan. Jumpa anda dalam siaran seterusnya!
Jika anda ingin menyokong penulisan saya atau menjamu saya dengan bir: https://buymeacoffee.com/bmours
Atas ialah kandungan terperinci Perkemas Bahagian Tulisan dan Elemen Teks. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Alat AI Hot

Undresser.AI Undress
Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover
Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool
Gambar buka pakaian secara percuma

Clothoff.io
Penyingkiran pakaian AI

Video Face Swap
Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Artikel Panas

Alat panas

Notepad++7.3.1
Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina
Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1
Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6
Alat pembangunan web visual

SublimeText3 versi Mac
Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas











Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.
