Rumah pembangunan bahagian belakang Tutorial Python Perkemas Bahagian Tulisan dan Elemen Teks

Perkemas Bahagian Tulisan dan Elemen Teks

Sep 06, 2024 am 06:02 AM

Streamlit Part Write and Text Elements

Getting Started with Streamlit: A Beginner's Guide

Code can be found here: GitHub - jamesbmour/blog_tutorials:

Video version of blog can be found here: https://youtu.be/EQcqNW7Nw7M

Introduction

Streamlit is an open-source app framework that allows you to create beautiful, interactive web applications with minimal effort. If you’re a data scientist, machine learning engineer, or anyone working with data, Streamlit is the perfect tool to turn your Python scripts into interactive apps quickly. In this tutorial, we will dive into the basics of Streamlit by exploring some of its powerful features, such as st.write(), magic commands, and text elements.

Let’s get started by building a simple app to demonstrate these functionalities!

Setting Up Your Streamlit Environment

Before we jump into the code, make sure you have Streamlit installed. If you haven't installed it yet, you can do so with the following command:

pip install streamlit
Salin selepas log masuk

Now, let’s start coding our first Streamlit app.

Building Your First Streamlit App

1. Adding a Title to Your App

Streamlit makes it incredibly easy to add titles and headings to your app. The st.title() function allows you to display a large title at the top of your application, which serves as the main heading.

import streamlit as st

st.title("Introduction to Streamlit: Part 1")

Salin selepas log masuk

This will display a large, bold title at the top of your app.

Streamlit Write Elements

Using st.write() for Versatile Output

The st.write() function is one of the most versatile functions in Streamlit. You can use it to display almost anything, including text, data frames, charts, and more—all with a single line of code.

Displaying a DataFrame

Let's start by displaying a simple DataFrame using st.write().

import pandas as pd

df = pd.DataFrame({
    "Column 1": [1, 2, 3, 4],
    "Column 2": [10, 20, 30, 40]
})

st.write("DataFrame using st.write() function")
st.write(df)

Salin selepas log masuk

This code creates a DataFrame with two columns and displays it directly in your app. The beauty of st.write() is that it automatically formats the DataFrame into a neat table, complete with scroll bars if needed.

Displaying Markdown Text

Another cool feature of st.write() is its ability to render Markdown text. This allows you to add formatted text, such as headers, subheaders, and paragraphs, with ease.

markdown_txt = (
    "### This is a Markdown Header\\n"
    "#### This is a Markdown Subheader\\n"
    "This is a Markdown paragraph.\\n"
)
st.write(markdown_txt)

Salin selepas log masuk

With just a few lines of code, you can add rich text to your app.

Streaming Data with st.write_stream()

Streamlit also allows you to stream data to your app in real-time using the st.write_stream() function. This is particularly useful for displaying data that updates over time, such as sensor readings or live analytics.

import time

st.write("## Streaming Data using st.write_stream() function")
stream_btn = st.button("Click Button to Stream Data")

TEXT = """
# Stream a generator, iterable, or stream-like sequence to the app.
"""

def stream_data(txt="Hello, World!"):
    for word in txt.split(" "):
        yield word + " "
        time.sleep(0.01)

if stream_btn:
    st.write_stream(stream_data(TEXT))

Salin selepas log masuk

In this example, when the button is clicked, the app will start streaming data word by word from the TEXT string, simulating real-time data updates.

Streamlit Text Elements

In addition to data streaming, Streamlit provides several text elements to enhance the presentation of your app.

Headers and Subheaders

You can easily add headers and subheaders using st.header() and st.subheader():

st.header("This is a Header")
st.subheader("This is a Subheader")

Salin selepas log masuk

These functions help structure your content, making your app more organized and visually appealing.

Captions

Captions are useful for adding small notes or explanations. You can add them using st.caption():

st.caption("This is a caption")

Salin selepas log masuk

Displaying Code

If you want to display code snippets in your app, you can use st.code():

code_txt = """
import pandas as pd
import streamlit as st

st.title("Streamlit Tutorials")
for i in range(10):
    st.write(i)
"""
st.code(code_txt)

Salin selepas log masuk

This will display the code in a nicely formatted, syntax-highlighted block.

Displaying Mathematical Expressions

For those who need to include mathematical equations, Streamlit supports LaTeX:

st.latex(r"e = mc^2")
st.latex(r"\\int_a^b x^2 dx")

Salin selepas log masuk

These commands will render LaTeX equations directly in your app.

Adding Dividers

To separate different sections of your app, you can use st.divider():

st.write("This is some text below the divider.")
st.divider()
st.write("This is some other text below the divider.")

Salin selepas log masuk

Dividers add a horizontal line between sections, helping to break up the content visually.

Conclusion

In this introductory tutorial, we covered the basics of Streamlit, including how to use st.write() to display data and text, and how to stream data using st.write_stream(). We also explored various text elements to enhance the structure and readability of your app.

Streamlit makes it incredibly easy to create interactive web applications with just a few lines of code. Whether you're building dashboards, data exploration tools, or any other data-driven app, Streamlit provides the tools you need to get started quickly.

In the next tutorial, we’ll dive deeper into widgets and interactivity features in Streamlit. Stay tuned!

Jika anda mendapati tutorial ini membantu, jangan lupa untuk berkongsi dan melanggan untuk lebih banyak kandungan. Jumpa anda dalam siaran seterusnya!

Jika anda ingin menyokong penulisan saya atau menjamu saya dengan bir: https://buymeacoffee.com/bmours

Atas ialah kandungan terperinci Perkemas Bahagian Tulisan dan Elemen Teks. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn

Alat AI Hot

Undresser.AI Undress

Undresser.AI Undress

Apl berkuasa AI untuk mencipta foto bogel yang realistik

AI Clothes Remover

AI Clothes Remover

Alat AI dalam talian untuk mengeluarkan pakaian daripada foto.

Undress AI Tool

Undress AI Tool

Gambar buka pakaian secara percuma

Clothoff.io

Clothoff.io

Penyingkiran pakaian AI

Video Face Swap

Video Face Swap

Tukar muka dalam mana-mana video dengan mudah menggunakan alat tukar muka AI percuma kami!

Alat panas

Notepad++7.3.1

Notepad++7.3.1

Editor kod yang mudah digunakan dan percuma

SublimeText3 versi Cina

SublimeText3 versi Cina

Versi Cina, sangat mudah digunakan

Hantar Studio 13.0.1

Hantar Studio 13.0.1

Persekitaran pembangunan bersepadu PHP yang berkuasa

Dreamweaver CS6

Dreamweaver CS6

Alat pembangunan web visual

SublimeText3 versi Mac

SublimeText3 versi Mac

Perisian penyuntingan kod peringkat Tuhan (SublimeText3)

Topik panas

Tutorial Java
1662
14
Tutorial PHP
1262
29
Tutorial C#
1235
24
Python vs C: Aplikasi dan kes penggunaan dibandingkan Python vs C: Aplikasi dan kes penggunaan dibandingkan Apr 12, 2025 am 12:01 AM

Python sesuai untuk sains data, pembangunan web dan tugas automasi, manakala C sesuai untuk pengaturcaraan sistem, pembangunan permainan dan sistem tertanam. Python terkenal dengan kesederhanaan dan ekosistem yang kuat, manakala C dikenali dengan keupayaan kawalan dan keupayaan kawalan yang mendasari.

Rancangan Python 2 jam: Pendekatan yang realistik Rancangan Python 2 jam: Pendekatan yang realistik Apr 11, 2025 am 12:04 AM

Anda boleh mempelajari konsep pengaturcaraan asas dan kemahiran Python dalam masa 2 jam. 1. Belajar Pembolehubah dan Jenis Data, 2.

Python: Permainan, GUI, dan banyak lagi Python: Permainan, GUI, dan banyak lagi Apr 13, 2025 am 12:14 AM

Python cemerlang dalam permainan dan pembangunan GUI. 1) Pembangunan permainan menggunakan pygame, menyediakan lukisan, audio dan fungsi lain, yang sesuai untuk membuat permainan 2D. 2) Pembangunan GUI boleh memilih tkinter atau pyqt. TKInter adalah mudah dan mudah digunakan, PYQT mempunyai fungsi yang kaya dan sesuai untuk pembangunan profesional.

Berapa banyak python yang boleh anda pelajari dalam 2 jam? Berapa banyak python yang boleh anda pelajari dalam 2 jam? Apr 09, 2025 pm 04:33 PM

Anda boleh mempelajari asas -asas Python dalam masa dua jam. 1. Belajar pembolehubah dan jenis data, 2. Struktur kawalan induk seperti jika pernyataan dan gelung, 3 memahami definisi dan penggunaan fungsi. Ini akan membantu anda mula menulis program python mudah.

Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Python vs C: Lengkung pembelajaran dan kemudahan penggunaan Apr 19, 2025 am 12:20 AM

Python lebih mudah dipelajari dan digunakan, manakala C lebih kuat tetapi kompleks. 1. Sintaks Python adalah ringkas dan sesuai untuk pemula. Penaipan dinamik dan pengurusan memori automatik menjadikannya mudah digunakan, tetapi boleh menyebabkan kesilapan runtime. 2.C menyediakan kawalan peringkat rendah dan ciri-ciri canggih, sesuai untuk aplikasi berprestasi tinggi, tetapi mempunyai ambang pembelajaran yang tinggi dan memerlukan memori manual dan pengurusan keselamatan jenis.

Python dan Masa: Memanfaatkan masa belajar anda Python dan Masa: Memanfaatkan masa belajar anda Apr 14, 2025 am 12:02 AM

Untuk memaksimumkan kecekapan pembelajaran Python dalam masa yang terhad, anda boleh menggunakan modul, masa, dan modul Python. 1. Modul DateTime digunakan untuk merakam dan merancang masa pembelajaran. 2. Modul Masa membantu menetapkan kajian dan masa rehat. 3. Modul Jadual secara automatik mengatur tugas pembelajaran mingguan.

Python: meneroka aplikasi utamanya Python: meneroka aplikasi utamanya Apr 10, 2025 am 09:41 AM

Python digunakan secara meluas dalam bidang pembangunan web, sains data, pembelajaran mesin, automasi dan skrip. 1) Dalam pembangunan web, kerangka Django dan Flask memudahkan proses pembangunan. 2) Dalam bidang sains data dan pembelajaran mesin, numpy, panda, scikit-learn dan perpustakaan tensorflow memberikan sokongan yang kuat. 3) Dari segi automasi dan skrip, Python sesuai untuk tugas -tugas seperti ujian automatik dan pengurusan sistem.

Python: Automasi, skrip, dan pengurusan tugas Python: Automasi, skrip, dan pengurusan tugas Apr 16, 2025 am 12:14 AM

Python cemerlang dalam automasi, skrip, dan pengurusan tugas. 1) Automasi: Sandaran fail direalisasikan melalui perpustakaan standard seperti OS dan Shutil. 2) Penulisan Skrip: Gunakan Perpustakaan Psutil untuk memantau sumber sistem. 3) Pengurusan Tugas: Gunakan perpustakaan jadual untuk menjadualkan tugas. Kemudahan penggunaan Python dan sokongan perpustakaan yang kaya menjadikannya alat pilihan di kawasan ini.

See all articles