C++의 일반적인 정렬 알고리즘을 마스터하세요.
C++는 컴퓨터 프로그래밍에서 널리 사용되는 프로그래밍 언어이며, 정렬 알고리즘은 프로그래밍에서 일반적으로 사용되는 알고리즘 중 하나입니다. 정렬 알고리즘을 익히면 효율적인 프로그램 작성 능력을 향상하고 프로그래밍 기술을 향상시킬 수 있습니다. 이 기사에서는 C++에서 일반적으로 사용되는 정렬 알고리즘을 소개합니다.
- 버블 정렬
버블 정렬은 인접한 요소를 순서대로 비교하고 더 큰 요소를 순서의 끝 부분으로 교환하여 정렬을 수행하는 기본 정렬 알고리즘입니다. 특히 버블 정렬은 각 라운드에서 인접한 요소의 크기를 비교하고 마지막 요소가 정렬될 때까지 더 큰 요소를 뒤로 바꿉니다.
C++ 코드는 다음과 같습니다.
void bubbleSort(int arr[], int n) { for (int i = 0; i < n - 1; i++) { for (int j = 0; j < n - i - 1; j++) { if (arr[j] > arr[j+1]) { // 交换元素 int temp = arr[j]; arr[j] = arr[j+1]; arr[j+1] = temp; } } } }
- 선택 정렬
선택 정렬은 정렬되지 않은 부분에서 가장 작은 요소를 매번 선택하여 정렬된 부분의 마지막에 배치하는 간단한 정렬 알고리즘입니다. 정렬. 구체적으로 선택 정렬은 각 라운드에서 가장 작은 요소를 선택하여 현재 위치의 요소와 교환합니다.
C++ 코드는 다음과 같습니다.
void selectionSort(int arr[], int n) { int minIndex, temp; for (int i = 0; i < n - 1; i++) { minIndex = i; // 记录最小元素的位置 for (int j = i + 1; j < n; j++) { if (arr[j] < arr[minIndex]) { // 更新最小元素的位置 minIndex = j; } } // 交换元素 temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } }
- 삽입 정렬
삽입 정렬은 이미 정렬된 시퀀스에 요소를 삽입하여 더 긴 정렬 시퀀스를 얻는 간단하고 직관적인 정렬 알고리즘입니다. 특히, 삽입 정렬의 각 라운드는 정렬된 하위 배열에 요소를 삽입하고 나머지 요소를 뒤로 이동합니다.
C++ 코드는 다음과 같습니다.
void insertionSort(int arr[], int n) { int key, j; for (int i = 1; i < n; i++) { key = arr[i]; // 待插入的元素 j = i - 1; // 将大于待插入元素的元素向后移动 while (j >= 0 && arr[j] > key) { arr[j+1] = arr[j]; j--; } // 将待插入元素插入到正确的位置 arr[j+1] = key; } }
- 빠른 정렬
빠른 정렬은 효율적인 정렬 알고리즘입니다. 피벗 요소를 선택하여 시퀀스를 두 부분으로 분할합니다. 한 부분은 피벗 요소보다 작습니다. 다른 부분은 피벗 요소보다 크고 두 하위 시퀀스를 재귀적으로 정렬합니다. 구체적으로 말하면, 퀵 정렬은 각 라운드에서 피벗 요소를 선택하고 피벗 요소보다 작은 요소를 피벗 요소 왼쪽에 배치하고 피벗 요소보다 큰 요소를 오른쪽에 배치합니다. 그런 다음 왼쪽 및 오른쪽 하위 시퀀스가 동일한 방식으로 재귀적으로 정렬됩니다.
C++ 코드는 다음과 같습니다.
void quickSort(int arr[], int left, int right) { int i = left, j = right; int pivot = arr[(left + right) / 2]; // 选择枢纽元素 while (i <= j) { // 找到左侧大于枢纽元素的元素 while (arr[i] < pivot) { i++; } // 找到右侧小于枢纽元素的元素 while (arr[j] > pivot) { j--; } // 交换左右元素 if (i <= j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; i++; j--; } } // 递归排序左侧和右侧的子序列 if (left < j) { quickSort(arr, left, j); } if (i < right) { quickSort(arr, i, right); } }
- Merge sort
Merge sort는 시퀀스를 두 개의 하위 시퀀스로 나누고 각 하위 시퀀스를 별도로 정렬한 다음 마지막으로 두 하위 시퀀스를 병합하는 정렬 알고리즘입니다. . 특히 병합 정렬은 먼저 시퀀스를 두 개의 하위 시퀀스로 분할하고 두 개의 하위 시퀀스를 재귀적으로 정렬한 다음 두 개의 정렬된 하위 시퀀스를 하나의 정렬된 시퀀스로 병합합니다.
C++ 코드는 다음과 같습니다.
void merge(int arr[], int left, int mid, int right) { int i, j, k; int n1 = mid - left + 1; int n2 = right - mid; int L[n1], R[n2]; // 将数据拷贝到两个临时数组中 for (i = 0; i < n1; i++) L[i] = arr[left + i]; for (j = 0; j < n2; j++) R[j] = arr[mid + 1 + j]; i = 0; // 左侧子数组的索引 j = 0; // 右侧子数组的索引 k = left; // 合并后的数组的索引 while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // 将左侧子数组的剩余元素拷贝到合并后的数组中 while (i < n1) { arr[k] = L[i]; i++; k++; } // 将右侧子数组的剩余元素拷贝到合并后的数组中 while (j < n2) { arr[k] = R[j]; j++; k++; } } void mergeSort(int arr[], int left, int right) { if (left < right) { int mid = left + (right - left) / 2; // 递归排序左侧和右侧的子序列 mergeSort(arr, left, mid); mergeSort(arr, mid + 1, right); // 合并两个有序子数组 merge(arr, left, mid, right); } }
위는 C++에서 일반적으로 사용되는 5가지 정렬 알고리즘입니다. 알고리즘은 지루해 보일 수도 있지만 정렬 알고리즘을 학습하면 프로그래밍의 효율성과 품질을 향상시킬 수 있는 중요한 부분입니다.
위 내용은 C++의 일반적인 정렬 알고리즘을 마스터하세요.의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C#은 자동 쓰레기 수집 메커니즘을 사용하는 반면 C는 수동 메모리 관리를 사용합니다. 1. C#의 쓰레기 수집기는 메모리 누출 위험을 줄이기 위해 메모리를 자동으로 관리하지만 성능 저하로 이어질 수 있습니다. 2.C는 유연한 메모리 제어를 제공하며, 미세 관리가 필요한 애플리케이션에 적합하지만 메모리 누출을 피하기 위해주의해서 처리해야합니다.
