컬 라이브러리 pycurl 예제 및 매개변수에 대한 자세한 설명
Pycurl은 강력한 Python URL 라이브러리로 C 언어로 작성되었으며 urllib 및 httplib보다 매우 빠릅니다.
오늘은 pycurl의 사용법과 매개변수를 자세히 살펴보겠습니다
일반적인 메소드:
pycurl.Curl() #pycurl 객체를 생성하는 메소드
pycurl.Curl().setopt(pycurl.URL, http://www.pythontab.com) # 접근할 URL을 설정
pycurl.Curl().setopt(pycurl.MAXREDIRS, 5) # 최대 리디렉션 수 설정
pycurl.Curl().setopt(pycurl.CONNECTTIMEOUT, 60)
pycurl.Curl().setopt(pycurl.TIMEOUT, 300) #Connection 시간 초과 설정
pycurl.Curl().setopt(pycurl.USERAGENT, "Mozilla/5.0 (호환; MSIE 6.0; Windows NT 5.1; SV1; .NET CLR 1.1.4322)") #브라우저 시뮬레이션
pycurl.Curl().perform() # 서버에서 반환된 정보
pycurl.Curl().getinfo(pycurl.HTTP_CODE) # HTTP 상태를 보는 것은 다음의 상태 속성과 유사합니다. urllib
pycurl.NAMELOOKUP_TIME 도메인 이름 확인 시간
pycurl.CONNECT_TIME 원격 서버 연결 시간
pycurl.PRETRANSFER_TIME 연결 후 전송 시작까지의 시간
pycurl .STARTTRANSFER_TIME 처음 수신된 시간 바이트
pycurl.TOTAL_TIME 이전 요청의 총 시간
pycurl.REDIRECT_TIME 리디렉션이 있는 경우 소요 시간
pycurl.EFFECTIVE_URL
pycurl.HTTP_CODE HTTP 응답 코드
pycurl.REDIRECT_COUNT 리디렉션 수
pycurl.SIZE_UPLOAD 업로드된 데이터 크기
pycurl.SIZE_DOWNLOAD 다운로드된 데이터 크기
pycurl.SPEED_UPLOAD 업로드 속도
pycurl.HEADER_SIZE 헤더 크기
pycurl.REQUEST_SIZE 요청 크기
pycurl.CONTENT_LENGTH_DOWNLOAD 다운로드 콘텐츠 길이
pycurl . CONTENT_LENGTH_UPLOAD 업로드 콘텐츠 길이
pycurl.CONTENT_TYPE 콘텐츠 유형
pycurl.RESPONSE_CODE 응답 코드
pycurl.SPEED_DOWNLOAD 다운로드 속도
pycurl.SSL_VERIFYRESULT
pycurl.INFO_FILETIME 파일 시간 정보
pycurl.HTTP_CONNECTCODE HTTP 연결 코드
pycurl.HTTPAUTH_AVAIL
pycurl.PROXYAUTH_AVAIL
pycurl.OS_ERRNO
pycurl.NUM_CONNECTS
pycurl.SSL_ENGINES
pycurl.INFO_COOKIELIST
pycurl.LASTSOCKET
pycurl.FTP_ENTRY_PATH
예:
import StringIO import pycurl c = pycurl.Curl() str = StringIO.StringIO() c.setopt(pycurl.URL, "http://www.pythontab.com") c.setopt(pycurl.WRITEFUNCTION, str.write) c.setopt(pycurl.FOLLOWLOCATION, 1) c.perform() print c.getinfo(pycurl.EFFECTIVE_URL)
PHP에 익숙한 친구들이라면 이 컬 라이브러리의 사용법이 PHP의 컬과 매우 유사하다는 것을 발견했을 것입니다.

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
