Python 업데이트 비동기 지원의 상호 운용성
마지막 IoP 업데이트 이후 오랜 시간이 흘렀습니다. 따라잡자!
IoP 명령줄 인터페이스에 중요한 개선 사항이 추가되었습니다.
-
이름 변경: 프로젝트의 새로운 브랜드에 맞춰
grongier.pex
모듈의 이름이iop
으로 변경되었습니다. - 비동기 지원: 이제 IoP는 비동기 기능과 코루틴을 완벽하게 지원합니다.
프로젝트 이름 바꾸기
grongier.pex
모듈은 이전 버전과의 호환성을 위해 계속 액세스할 수 있지만 향후 릴리스에서는 제거될 예정입니다. 새로운 개발에는 iop
모듈을 사용하세요.
비동기 기능
IoP는 오랫동안 비동기 호출을 지원해 왔지만 이전에는 비동기 함수와 코루틴을 직접 사용할 수 없었습니다. 이 새로운 기능을 탐색하기 전에 InterSystems IRIS 내에서 비동기 호출이 어떻게 작동하는지 검토하고 두 가지 예를 살펴보겠습니다.
기존 비동기 호출
이는 전통적인 접근 방식을 보여줍니다.
from iop import BusinessProcess from msg import MyMessage class MyBP(BusinessProcess): def on_message(self, request): msg_one = MyMessage(message="Message1") msg_two = MyMessage(message="Message2") self.send_request_async("Python.MyBO", msg_one, completion_key="1") self.send_request_async("Python.MyBO", msg_two, completion_key="2") def on_response(self, request, response, call_request, call_response, completion_key): if completion_key == "1": self.response_one = call_response elif completion_key == "2": self.response_two = call_response def on_complete(self, request, response): self.log_info(f"Received response one: {self.response_one.message}") self.log_info(f"Received response two: {self.response_two.message}")
이는 IRIS의 비동기 호출 동작을 반영합니다. send_request_async
는 비즈니스 운영에 요청을 보내고 on_response
는 수신된 응답을 처리합니다. completion_key
응답을 차별화합니다.
동기식 다중 요청 기능
완전히 새로운 것은 아니지만 여러 동기식 요청을 동시에 보내는 기능은 주목할 만합니다.
from iop import BusinessProcess from msg import MyMessage class MyMultiBP(BusinessProcess): def on_message(self, request): msg_one = MyMessage(message="Message1") msg_two = MyMessage(message="Message2") tuple_responses = self.send_multi_request_sync([("Python.MyMultiBO", msg_one), ("Python.MyMultiBO", msg_two)]) self.log_info("All requests have been processed") for target, request, response, status in tuple_responses: self.log_info(f"Received response: {response.message}")
이 예에서는 동일한 비즈니스 운영에 두 개의 요청을 동시에 보냅니다. 응답은 각 호출에 대한 대상, 요청, 응답 및 상태를 포함하는 튜플입니다. 이는 요청 순서가 중요하지 않을 때 특히 유용합니다.
비동기 함수 및 코루틴
IoP에서 비동기 기능과 코루틴을 활용하는 방법은 다음과 같습니다.
import asyncio from iop import BusinessProcess from msg import MyMessage class MyAsyncNGBP(BusinessProcess): def on_message(self, request): results = asyncio.run(self.await_response(request)) for result in results: print(f"Received response: {result.message}") async def await_response(self, request): msg_one = MyMessage(message="Message1") msg_two = MyMessage(message="Message2") tasks = [self.send_request_async_ng("Python.MyAsyncNGBO", msg_one), self.send_request_async_ng("Python.MyAsyncNGBO", msg_two)] return await asyncio.gather(*tasks)
send_request_async_ng
을 사용하여 여러 요청을 동시에 보냅니다. asyncio.gather
모든 응답이 동시에 대기되도록 합니다.
여기까지 잘 따라오셨다면 "부메랑" 댓글 부탁드려요! 그것은 많은 것을 의미할 것입니다. 감사합니다!
await_response
은 여러 요청을 보내고 모든 응답을 기다리는 코루틴입니다.
비동기 함수와 코루틴을 사용하면 병렬 요청을 통한 성능 향상, 가독성 및 유지 관리 용이성 향상, asyncio
모듈을 사용한 유연성 향상, 예외 및 시간 초과 처리 향상 등의 이점이 있습니다.
비동기 방식 비교
send_request_async
, send_multi_request_sync
, send_request_async_ng
의 주요 차이점은 무엇인가요?
-
send_request_async
:on_response
이 구현되고completion_key
이 사용되는 경우에만 요청을 보내고 응답을 기다립니다. 단순하지만 병렬 요청의 경우 확장성이 떨어집니다. -
send_multi_request_sync
: 여러 요청을 동시에 보내고 모든 응답을 기다립니다. 사용하기는 쉽지만 응답 순서가 보장되지 않습니다. -
send_request_async_ng
: 여러 요청을 동시에 보내고 응답 순서를 유지하면서 모든 응답을 기다립니다. 비동기 함수와 코루틴이 필요합니다.
즐거운 멀티스레딩을 즐기세요!
위 내용은 Python 업데이트 비동기 지원의 상호 운용성의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
