DWORD 배열로 표현되는 큰 정수를 제곱하는 가장 빠른 알고리즘은 무엇입니까?
빠른 빅넘 제곱 계산
이 글의 목적은 부호 없는 DWORD의 동적 배열로 표현된 bigint에 대해 y = x^2를 계산하는 가장 빠른 방법을 결정하는 것입니다.
문제 설명
bigint x를 배열로 표현하면 DWORD:
DWORD x[n+1] = { LSW, ......, MSW };
여기서:
- n 1은 사용된 DWORD 수입니다.
- x = x[0] x[1]<< 32 ... x[N]<<32*(n)
정밀도를 잃지 않고 최대한 빨리 y = x^2의 값을 구합니다.
가정:
- 계산은 C 및 32비트 정수 연산을 사용하여 수행됩니다. carry.
순진한 접근 방식(O(n^2) 곱셈)
순진한 접근 방식은 x를 자체적으로 곱하는 것으로, O(n^2) 시간이 걸립니다. 이는 다음과 같이 표현될 수 있습니다:
y = x * x y = (x0 + x1 + x2 + ...xn)*(x0 + x1 + x2 + ...xn)
곱셈을 확장하면 다음과 같은 결과가 나옵니다.
y0 = x0*x0 y1 = x1*x0 + x0*x1 y2 = x2*x0 + x1*x1 + x0*x2 y3 = x3*x0 + x2*x1 + x1*x2 ... y(2n-3) = xn(n-2)*x(n ) + x(n-1)*x(n-1) + x(n )*x(n-2) y(2n-2) = xn(n-1)*x(n ) + x(n )*x(n-1) y(2n-1) = xn(n )*x(n )
Karatsuba 곱셈
Karatsuba 알고리즘을 사용하여 곱셈 속도를 높일 수 있습니다. O(n^log2(3)). 유망해 보이지만 알고리즘의 재귀적 특성으로 인해 큰 숫자에 상당한 성능 오버헤드가 발생할 수 있습니다.
최적화된 Schönhage-Strassen 곱셈
Schönhage-Strassen 알고리즘은 O( nlog(n)(log(log(n)))) 분할 정복 사용 접근하다. 그러나 이 알고리즘은 오버플로 문제와 부호 없는 정수에 대한 모듈러 산술의 필요성으로 인해 실질적인 제한이 있습니다.
결론
더 작은 숫자의 경우 간단한 O(n^2) 곱셈 접근 방식은 다음과 같습니다. 가장 효율적입니다. 더 큰 숫자의 경우 Karatsuba 곱셈 알고리즘을 권장합니다. 성능을 향상시키기 위해 FFT(Fast Fourier Transform) 또는 NTT(Number Theoretic Transform)를 사용하는 등 추가 최적화를 모색할 수 있습니다.
위 내용은 DWORD 배열로 표현되는 큰 정수를 제곱하는 가장 빠른 알고리즘은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C#은 자동 쓰레기 수집 메커니즘을 사용하는 반면 C는 수동 메모리 관리를 사용합니다. 1. C#의 쓰레기 수집기는 메모리 누출 위험을 줄이기 위해 메모리를 자동으로 관리하지만 성능 저하로 이어질 수 있습니다. 2.C는 유연한 메모리 제어를 제공하며, 미세 관리가 필요한 애플리케이션에 적합하지만 메모리 누출을 피하기 위해주의해서 처리해야합니다.
