Python 함수에서 * 및 Unpack 인수를 어떻게 수행합니까?
Python에서 인수 압축 풀기: 및 * 탐색
단일 시퀀스 압축 풀기: *
단일 별표( *)는 시퀀스나 컬렉션을 위치 인수로 풀어내는 데 중요한 역할을 합니다. 다음 예를 고려해보세요.
def add(a, b): return a + b values = (1, 2) s = add(*values) # Equivalent to: s = add(1, 2)
* 연산자를 사용하면 값 튜플의 압축을 효과적으로 풀고 해당 요소(1과 2)를 add 함수에 인수로 전달합니다. 이는 가변 길이 시퀀스로 작업할 때 특히 유용합니다.
사전 압축 풀기: **의 힘
이중 별표(**)는 비슷한 목적으로 사용되지만 사전의 경우 다음을 수행할 수 있습니다. 명명된 인수에 대한 값을 제공합니다. 다음 예를 들어보세요.
values = { 'a': 1, 'b': 2 } s = add(**values) # Equivalent to: s = add(a=1, b=2)
여기에서 ** 연산자는 값 사전의 압축을 풀어 키-값 쌍을 추출하고 이를 사용하여 add 함수 호출에서 해당 키워드 인수를 설정합니다.
과 의 시너지*
두 연산자를 동일한 기능으로 결합할 수 있다는 점이 주목할 만합니다. 부르다. 다음 시나리오를 고려해보세요.
def sum(a, b, c, d): return a + b + c + d values1 = (1, 2) values2 = { 'c': 10, 'd': 15 } s = add(*values1, **values2) # Equivalent to: s = sum(1, 2, c=10, d=15)
이 호출은 value1을 처음 두 개의 위치 인수(a 및 b)에 효과적으로 압축 해제하고, value2를 나머지 키워드 인수(c 및 d)에 압축 해제합니다.
구현 및 성능에 미치는 영향:
Python은 함수 인수 바인딩과 동적 호출의 조합을 통해 이 동작을 구현합니다. 세대. 및 *를 사용하면 가변 길이 인수를 사용하여 함수를 유연하게 호출할 수 있으므로 간결하고 다재다능한 코드가 생성됩니다. 그러나 이러한 연산자를 과도하게 사용하면 특히 빈도가 높은 함수 호출과 결합할 때 성능에 잠재적으로 영향을 미칠 수 있다는 점에 유의하는 것이 중요합니다.
위 내용은 Python 함수에서 * 및 Unpack 인수를 어떻게 수행합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
