IRIS-RAG-Gen: IRIS 벡터 검색으로 구동되는 ChatGPT RAG 애플리케이션 개인화
안녕하세요 커뮤니티 여러분,
이 글에서는 제 애플리케이션인 iris-RAG-Gen을 소개하겠습니다.
Iris-RAG-Gen은 Streamlit 웹 프레임워크, LangChain 및 OpenAI의 도움으로 IRIS 벡터 검색 기능을 활용하여 ChatGPT를 개인화하는 생성형 AI RAG(검색 증강 생성) 애플리케이션입니다. 이 애플리케이션은 IRIS를 벡터 저장소로 사용합니다.
애플리케이션 기능
- 문서(PDF 또는 TXT)를 IRIS에 수집
- 선택한 처리 문서와 채팅
- 수집된 문서 삭제
- 오픈AI 챗GPT
문서(PDF 또는 TXT)를 IRIS로 수집
문서를 수집하려면 아래 단계를 따르세요.
- OpenAI 키 입력
- 문서 선택(PDF 또는 TXT)
- 문서 설명 입력
- 문서 수집 버튼을 클릭하세요
문서 수집 기능은 문서 세부정보를 rag_documents 테이블에 삽입하고 'rag_document id'(rag_documents의 ID) 테이블을 생성하여 벡터 데이터를 저장합니다.
아래 Python 코드는 선택한 문서를 벡터로 저장합니다.
from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.document_loaders import PyPDFLoader, TextLoader from langchain_iris import IRISVector from langchain_openai import OpenAIEmbeddings from sqlalchemy import create_engine,text <span>class RagOpr:</span> #Ingest document. Parametres contains file path, description and file type <span>def ingestDoc(self,filePath,fileDesc,fileType):</span> embeddings = OpenAIEmbeddings() #Load the document based on the file type if fileType == "text/plain": loader = TextLoader(filePath) elif fileType == "application/pdf": loader = PyPDFLoader(filePath) #load data into documents documents = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=400, chunk_overlap=0) #Split text into chunks texts = text_splitter.split_documents(documents) #Get collection Name from rag_doucments table. COLLECTION_NAME = self.get_collection_name(fileDesc,fileType) # function to create collection_name table and store vector data in it. db = IRISVector.from_documents( embedding=embeddings, documents=texts, collection_name = COLLECTION_NAME, connection_string=self.CONNECTION_STRING, ) #Get collection name <span>def get_collection_name(self,fileDesc,fileType):</span> # check if rag_documents table exists, if not then create it with self.engine.connect() as conn: with conn.begin(): sql = text(""" SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = 'SQLUser' AND TABLE_NAME = 'rag_documents'; """) result = [] try: result = conn.execute(sql).fetchall() except Exception as err: print("An exception occurred:", err) return '' #if table is not created, then create rag_documents table first if len(result) == 0: sql = text(""" CREATE TABLE rag_documents ( description VARCHAR(255), docType VARCHAR(50) ) """) try: result = conn.execute(sql) except Exception as err: print("An exception occurred:", err) return '' #Insert description value with self.engine.connect() as conn: with conn.begin(): sql = text(""" INSERT INTO rag_documents (description,docType) VALUES (:desc,:ftype) """) try: result = conn.execute(sql, {'desc':fileDesc,'ftype':fileType}) except Exception as err: print("An exception occurred:", err) return '' #select ID of last inserted record sql = text(""" SELECT LAST_IDENTITY() """) try: result = conn.execute(sql).fetchall() except Exception as err: print("An exception occurred:", err) return '' return "rag_document"+str(result[0][0])
벡터 데이터를 검색하려면 관리 포털에서 아래 SQL 명령을 입력하세요
SELECT top 5 id, embedding, document, metadata FROM SQLUser.rag_document2
선택한 처리 문서와 채팅
채팅 옵션 선택 섹션에서 문서를 선택하고 질문을 입력하세요. 애플리케이션은 벡터 데이터를 읽고 관련 답변을 반환합니다
아래 Python 코드는 선택한 문서를 벡터로 저장합니다.
from langchain_iris import IRISVector from langchain_openai import OpenAIEmbeddings,ChatOpenAI from langchain.chains import ConversationChain from langchain.chains.conversation.memory import ConversationSummaryMemory from langchain.chat_models import ChatOpenAI <span>class RagOpr:</span> <span>def ragSearch(self,prompt,id):</span> #Concat document id with rag_doucment to get the collection name COLLECTION_NAME = "rag_document"+str(id) embeddings = OpenAIEmbeddings() #Get vector store reference db2 = IRISVector ( embedding_function=embeddings, collection_name=COLLECTION_NAME, connection_string=self.CONNECTION_STRING, ) #Similarity search docs_with_score = db2.similarity_search_with_score(prompt) #Prepair the retrieved documents to pass to LLM relevant_docs = ["".join(str(doc.page_content)) + " " for doc, _ in docs_with_score] #init LLM llm = ChatOpenAI( temperature=0, model_name="gpt-3.5-turbo" ) #manage and handle LangChain multi-turn conversations conversation_sum = ConversationChain( llm=llm, memory= ConversationSummaryMemory(llm=llm), verbose=False ) #Create prompt template = f""" Prompt: <span>{prompt} Relevant Docuemnts: {relevant_docs} """</span> #Return the answer resp = conversation_sum(template) return resp['response']
자세한 내용은 iris-RAG-Gen 공개 교환 신청 페이지를 참조하세요.
감사합니다
위 내용은 IRIS-RAG-Gen: IRIS 벡터 검색으로 구동되는 ChatGPT RAG 애플리케이션 개인화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
