목차
InterSystems 클라우드 문서 배포
섭취
데이터브릭
시각화
백엔드 개발 파이썬 튜토리얼 IRIS Cloud Document 및 Databricks를 사용한 Rivian GeoLocation 플로팅

IRIS Cloud Document 및 Databricks를 사용한 Rivian GeoLocation 플로팅

Jan 01, 2025 am 02:48 AM

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

InterSystems Cloud Document 및 Databricks를 사용하여 미시간 전역의 Rivian R1S에서 gnSSLocation 데이터 플롯

문서 데이터베이스의 사용 사례를 찾고 있다면 제가 가장 좋아하는 매우 간단한 사용 사례는 SQL을 사용하여 다른 데이터와 함께 JSON 더미를 쿼리하는 기능입니다. 별로 하는 일도 없이. 이것은 강력한 다중 모델 InterSystems 데이터 플랫폼에서 실현된 꿈이며, 여기에 내 Rivian R1S가 DeezWatts(A Rivian Data Adventure)를 위해 내보내는 지리적 위치 데이터를 시각화하기 위한 간단한 노트북에 표시되어 있습니다.

JDBC 문서 드라이버를 사용하여 InterSystems Cloud Document에서수집하고 시각화하는 2단계 접근 방식이 있습니다.

InterSystems 클라우드 문서 배포

우선 리스너가 활성화된 InterSystems Cloud Services Portal에서 소규모 클라우드 문서 배포를 시작했습니다.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

SSL 인증서를 다운로드하고 JDBC용 드라이버와 함께 제공되는 문서 드라이버도 잡아냈습니다.

섭취

수집을 위해 파일 시스템에서 JSON 문서를 리프트하고 리스너를 통해 문서 데이터베이스의 컬렉션으로 유지하는 방법을 파악하고 싶었습니다. 이를 위해 독립 실행형 Java 앱을 작성했습니다. 데이터가 노트북에 저장된 후 노트북에서 모든 일이 발생했기 때문에 이는 더 유용했습니다.
 

 
RivianDocDB.java

package databricks_rivian_irisdocdb;

import java.sql.SQLException;
import com.intersystems.document.*;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.*;
import java.io.IOException;
import java.io.InputStream;
import java.io.File;
import java.io.FileInputStream;
import org.apache.commons.io.IOUtils;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Stream;

public <span>class RivianDocDb </span>{
  <span>public static void main(String[] args) </span>{

    String directoryPath =
"/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/";

    DataSource datasrc = DataSource.createDataSource();
    datasrc.setPortNumber(443);
    datasrc.setServerName("k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com");
    datasrc.setDatabaseName("USER");
    datasrc.setUser("SQLAdmin");
    datasrc.setPassword("REDACTED");

    try {
      datasrc.setConnectionSecurityLevel(10);
    } catch (SQLException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }

    System.out.println("\nCreated datasrc\n");
    System.out.println(datasrc);
    datasrc.preStart(2);
    System.out.println("\nDataSource size =" + datasrc.getSize());

    // creates the collection if it dont exist
    Collection collectedDocs =
Collection.getCollection(datasrc,"deezwatts2");

    try (Stream<Path> paths = Files.list(Paths.get(directoryPath))) {
        paths.filter(Files::isRegularFile)
             .forEach(path -> {
                 File file = path.toFile();
             });
    } catch (IOException e) {
        e.printStackTrace();
    }

    File directory = new File(directoryPath);
    if (directory.isDirectory()) {
        File[] files = directory.listFiles();
        if (files != null) {
            for (File file : files) {
                if (file.isFile()) {

                    try (InputStream is = new
FileInputStream("/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/"
+ file.getName())) {
                      String jsonTxt = IOUtils.toString(is, "UTF-8");
                      
                      Document doc2 = JSONObject.fromJSONString(jsonTxt);
                      // top level key is whip2
                      Document doc3 = new JSONObject().put("whip2",doc2);

                      collectedDocs.insert(doc3);
                    } catch (IOException e) {
                      // TODO Auto-generated catch block
                      e.printStackTrace();
                    }

                }
            }
        }
    }


    long size = collectedDocs.size();
    System.out.println(Long.toString(size));
    System.out.println("\nIngested Documents =" + datasrc.getSize());
로그인 후 복사
로그인 후 복사

 

위의 내용은 JAVA 휴지통에 매우 가깝지만 작동하면 배포 시 컬렉션 브라우저에서 컬렉션을 볼 수 있습니다.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

데이터브릭

이제 약간의 Databricks 설정이 필요하지만 재미있는 부분을 위해 pyspark를 사용하여 작업할 가치가 있습니다.

두 개의 InterSystems 드라이버를 클러스터에 추가하고 인증서를 import_cloudsql_certficiate.sh 클러스터 초기화 스크립트에 넣어 키 저장소에 추가했습니다.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks
완전성을 위해 클러스터는 Databricks 16, Spark 3.5.0 및 Scala 2.12를 실행하고 있습니다

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

시각화

따라서 PySpark 작업을 실행하고 내가 끌어올 데이터 하위 집합에서 내 채찍이 있던 위치를 플롯하도록 설정해야 합니다.

우리는 플로팅에 대한 직접적인 접근 방식을 위해 지리판다와 지리 데이터 세트를 사용하고 있습니다.

package databricks_rivian_irisdocdb;

import java.sql.SQLException;
import com.intersystems.document.*;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.*;
import java.io.IOException;
import java.io.InputStream;
import java.io.File;
import java.io.FileInputStream;
import org.apache.commons.io.IOUtils;

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.stream.Stream;

public <span>class RivianDocDb </span>{
  <span>public static void main(String[] args) </span>{

    String directoryPath =
"/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/";

    DataSource datasrc = DataSource.createDataSource();
    datasrc.setPortNumber(443);
    datasrc.setServerName("k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com");
    datasrc.setDatabaseName("USER");
    datasrc.setUser("SQLAdmin");
    datasrc.setPassword("REDACTED");

    try {
      datasrc.setConnectionSecurityLevel(10);
    } catch (SQLException e) {
      // TODO Auto-generated catch block
      e.printStackTrace();
    }

    System.out.println("\nCreated datasrc\n");
    System.out.println(datasrc);
    datasrc.preStart(2);
    System.out.println("\nDataSource size =" + datasrc.getSize());

    // creates the collection if it dont exist
    Collection collectedDocs =
Collection.getCollection(datasrc,"deezwatts2");

    try (Stream<Path> paths = Files.list(Paths.get(directoryPath))) {
        paths.filter(Files::isRegularFile)
             .forEach(path -> {
                 File file = path.toFile();
             });
    } catch (IOException e) {
        e.printStackTrace();
    }

    File directory = new File(directoryPath);
    if (directory.isDirectory()) {
        File[] files = directory.listFiles();
        if (files != null) {
            for (File file : files) {
                if (file.isFile()) {

                    try (InputStream is = new
FileInputStream("/home/sween/Desktop/POP2/DEEZWATTS/rivian-iris-docdb/databricks_rivian_irisdocdb/in/json/"
+ file.getName())) {
                      String jsonTxt = IOUtils.toString(is, "UTF-8");
                      
                      Document doc2 = JSONObject.fromJSONString(jsonTxt);
                      // top level key is whip2
                      Document doc3 = new JSONObject().put("whip2",doc2);

                      collectedDocs.insert(doc3);
                    } catch (IOException e) {
                      // TODO Auto-generated catch block
                      e.printStackTrace();
                    }

                }
            }
        }
    }


    long size = collectedDocs.size();
    System.out.println(Long.toString(size));
    System.out.println("\nIngested Documents =" + datasrc.getSize());
로그인 후 복사
로그인 후 복사

이제 익숙해지는 데 약간의 시간이 걸리지만 JSON 경로 구문과 JSON_TABLE을 사용하여 InterSystems Cloud Document에 대한 쿼리는 다음과 같습니다.

import geopandas as gpd
import geodatasets
from shapely.geometry import Polygon
로그인 후 복사

 

JSON 경로 @jsonpath.com을 매우 간단하게 생성할 수 있는 사이트를 찾았습니다.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

다음으로 IRIS 문서 데이터베이스 배포에 대한 연결을 설정하고 이를 데이터 프레임으로 읽습니다.

dbtablequery = f"(SELECT TOP 1000 lat,longitude FROM JSON_TABLE(deezwatts2 FORMAT COLLECTION, '$' COLUMNS (lat VARCHAR(20) path '$.whip2.data.vehicleState.gnssLocation.latitude', longitude VARCHAR(20) path '$.whip2.data.vehicleState.gnssLocation.longitude' ))) AS temp_table;"
로그인 후 복사


다음으로 지리 데이터 세트에서 사용 가능한 지도를 가져옵니다. sdoh 지도는 미국의 일반적인 용도에 적합합니다.
 

# Read data from InterSystems Document Database via query above
df = (spark.read.format("jdbc") \
  .option("url", "jdbc:IRIS://k8s-05868f04-a88b7ecb-5c5e41660d-404345a22ba1370c.elb.us-east-1.amazonaws.com:443/USER") \
  .option("jars", "/Volumes/cloudsql/iris/irisvolume/intersystems-document-1.0.1.jar") \
  .option("driver", "com.intersystems.jdbc.IRISDriver") \
  .option("dbtable", dbtablequery) \
  .option("sql", "SELECT * FROM temp_table;") \
  .option("user", "SQLAdmin") \
  .option("password", "REDACTED") \
  .option("connection security level","10") \
  .option("sslConnection","true") \
  .load())
로그인 후 복사

이제 멋진 부분은 R1S가 이동한 위치의 지리적 위치 지점을 포함하려는 위치를 확대하려는 것입니다. 이를 위해서는 미시간 주에 대한 경계 상자가 필요합니다.

이를 위해 Keene의 정말 매끄러운 도구를 사용하여 지오 펜스 경계 상자를 그렸고 이를 통해 좌표 배열이 제공되었습니다!

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

이제 경계 상자의 좌표 배열이 있으므로 이를 다각형 개체에 넣어야 합니다.

# sdoh map is fantastic with bounding boxes
michigan = gpd.read_file(geodatasets.get_path("geoda.us_sdoh"))

gdf = gpd.GeoDataFrame(
    df.toPandas(), 
    geometry=gpd.points_from_xy(df.toPandas()['longitude'].astype(float), df.toPandas()['lat'].astype(float)), 
    crs=michigan.crs #"EPSG:4326"
)
로그인 후 복사

 

이제 리비안 R1S의 흔적을 그려보겠습니다! 이는 약 10,000개의 레코드에 대한 것입니다(결과를 제한하기 위해 위의 최상위 설명을 사용했습니다)
 

polygon = Polygon([
      (
        -87.286377,
        45.9664245
      ),
      (
        -81.6503906,
        45.8134865
      ),
      (
        -82.3864746,
        42.1063737
      ),
      (
        -84.7814941,
        41.3520721
      ),
      (
        -87.253418,
        42.5045029
      ),
      (
        -87.5610352,
        45.8823607
      )
    ])
로그인 후 복사

 

그리고 거기에... 디트로이트, 트래버스 시티, 실버 레이크 모래 언덕, 홀랜드, 물렛 호수, 인터라헨... 순수한 미시간, 리비안 스타일이 있습니다.

Rivian GeoLocation Plotting with IRIS Cloud Document and Databricks

위 내용은 IRIS Cloud Document 및 Databricks를 사용한 Rivian GeoLocation 플로팅의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

See all articles