백엔드 개발 파이썬 튜토리얼 데이터 과학에 유용한 PYTHON 라이브러리

데이터 과학에 유용한 PYTHON 라이브러리

Dec 31, 2024 pm 02:50 PM

Useful PYTHON Libraries for Data Science

NumPy는 Numerical Python을 의미합니다. NumPy의 가장 강력한 기능은 n차원 배열입니다. 이 라이브러리에는 기본 선형 대수 함수, 푸리에 변환, 고급 난수 기능 및 Fortran, C, C와 같은 다른 저수준 언어와의 통합을 위한 도구도 포함되어 있습니다.

SciPy는 Scientific Python을 의미합니다. SciPy는 NumPy를 기반으로 구축되었습니다. 이산 푸리에 변환, 선형 대수학, 최적화 및 희소 행렬과 같은 다양한 고급 과학 및 엔지니어링 모듈에 가장 유용한 라이브러리 중 하나입니다.

히스토그램부터 선 그래프, 히트 플롯에 이르기까지 다양한 그래프를 그리기 위한 Matplotlib. ipython 노트북(ipython 노트북 –pylab = 인라인)의 Pylab 기능을 사용하여 이러한 그리기 기능을 인라인으로 사용할 수 있습니다. 인라인 옵션을 무시하면 pylab은 ipython 환경을 Matlab과 매우 유사한 환경으로 변환합니다. Latex 명령을 사용하여 플롯에 수학을 추가할 수도 있습니다.

구조화된 데이터 작업 및 조작을 위한 Pandas. 이는 데이터 정리 및 준비에 광범위하게 사용됩니다. Pandas는 비교적 최근에 Python에 추가되었으며 데이터 과학자 커뮤니티에서 Python의 사용을 늘리는 데 중요한 역할을 했습니다.

머신러닝을 위한 Scikit Learn. NumPy, SciPy 및 matplotlib를 기반으로 구축된 이 라이브러리에는 분류, 회귀, 클러스터링, 차원 축소 등 기계 학습 및 통계 모델링을 위한 효율적인 도구가 많이 포함되어 있습니다.

통계 모델링을 위한 Statsmodels. Statsmodels는 사용자가 데이터를 탐색하고, 통계 모델을 추정하고, 통계 테스트를 수행할 수 있는 Python 모듈입니다. 다양한 유형의 데이터와 각 추정기에 대해 기술 통계, 통계 검정, 도표 작성 기능 및 결과 통계의 광범위한 목록을 사용할 수 있습니다.

통계 데이터 시각화를 위한 Seaborn. Seaborn은 Python으로 매력적이고 유익한 통계 그래픽을 만들기 위한 라이브러리입니다. matplotlib을 기반으로 합니다. Seaborn은 시각화를 데이터 탐색 및 이해의 핵심 부분으로 만드는 것을 목표로 합니다.

최신 웹 브라우저에서 대화형 플롯, 대시보드 및 데이터 애플리케이션을 생성하기 위한 Bokeh입니다. 이를 통해 사용자는 D3.js 스타일로 우아하고 간결한 그래픽을 생성할 수 있습니다. 또한 매우 큰 데이터 세트 또는 스트리밍 데이터 세트에 대한 고성능 상호 작용 기능을 갖추고 있습니다.

Numpy 및 Pandas의 기능을 분산 및 스트리밍 데이터 세트로 확장하는 Blaze입니다. Bcolz, MongoDB, SQLAlchemy, Apache Spark, PyTables 등을 포함한 다양한 소스의 데이터에 액세스하는 데 사용할 수 있습니다. Bokeh와 함께 Blaze는 막대한 양의 데이터에 대한 효과적인 시각화 및 대시보드를 생성하는 매우 강력한 도구 역할을 할 수 있습니다.

웹 크롤링을 위한 스크래피입니다. 특정 패턴의 데이터를 얻는 데 매우 유용한 프레임워크입니다. 웹사이트 홈 URL에서 시작한 다음 웹사이트 내의 웹페이지를 탐색하여 정보를 수집하는 기능이 있습니다.

기호 계산을 위한 SymPy. 기본적인 기호 연산부터 미적분학, 대수학, 이산 수학, 양자 물리학에 이르기까지 광범위한 기능을 갖추고 있습니다. 또 다른 유용한 기능은 계산 결과를 LaTeX 코드로 형식화하는 기능입니다.

웹 액세스 요청. 이는 표준 Python 라이브러리 urllib2와 유사하게 작동하지만 코딩하기가 훨씬 쉽습니다. urllib2와는 미묘한 차이가 있지만 초보자에게는 요청이 더 편리할 수 있습니다.

추가 라이브러리가 필요할 수 있습니다.

운영체제 및 파일 작업을 위한 os

그래프 기반 데이터 조작을 위한 networkx 및 igraph

텍스트 데이터에서 패턴을 찾는 정규식

웹 스크랩을 위한 BeautifulSoup. 한 번에 하나의 웹페이지에서만 정보를 추출하므로 Scrapy보다 열등합니다.

데이터 과학 리소스: https://t.me/DataScienceResourcesTP

위 내용은 데이터 과학에 유용한 PYTHON 라이브러리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles