PyTorch의 ColorJitter
커피 한잔 사주세요😄
ColorJitter()는 아래와 같이 0개 이상의 이미지의 밝기, 대비, 채도 및 색조를 변경할 수 있습니다.
*메모:
- 초기화를 위한 첫 번째 인수는 밝기(Optional-Default:0-Type:float 또는 tuple/list(float))입니다.
*메모:
- 밝기의 범위[최소, 최대]입니다.
- 0
- 단일 값이 [최대(0, 1-밝기), 1 밝기]로 변환됩니다.
- 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
- 초기화를 위한 두 번째 인수는 대조(Optional-Default:0-Type:float 또는 tuple/list(float))입니다.
*메모:
- 명암대비[최소, 최대]의 범위입니다.
- 0
- 단일 값은 [max(0, 1-대비), 1 대비]로 변환됩니다.
- 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
- 초기화를 위한 세 번째 인수는 포화(Optional-Default:0-Type:float 또는 tuple/list(float))입니다.
*메모:
- 채도의 범위[최소,최대]입니다.
- 0
- 단일 값은 [max(0, 1-채도), 1 채도]로 변환됩니다.
- 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
- 초기화를 위한 네 번째 인수는hue(Optional-Default:0-Type:float 또는 tuple/list(float))입니다.
*메모:
- 색상 범위[최소,최대]입니다.
- -0.5
- 단일 값이 [-색조, 색조]로 변환됩니다.
- 튜플이나 리스트는 요소가 2개인 1D여야 합니다. *첫 번째 요소는 두 번째 요소보다 작거나 같아야 합니다.
- 첫 번째 인수는 img(Required-Type:PIL Image 또는 tensor/tuple/list(int 또는 float))입니다.
*메모:
- 2D 또는 3D여야 합니다. 3D의 경우 가장 깊은 D에는 하나의 요소가 있어야 합니다.
- img=을 사용하지 마세요.
- v2는 V1 또는 V2에 따라 사용하는 것이 좋습니다? 어느 것을 사용해야 합니까?.
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
from torchvision.datasets import OxfordIIITPet from torchvision.transforms.v2 import ColorJitter colorjitter = ColorJitter() colorjitter = ColorJitter(brightness=0, contrast=0, saturation=0, hue=0) colorjitter = ColorJitter(brightness=(1.0, 2.0), contrast=(1.0, 1.0), saturation=(1.0, 1.0), hue=(0.0, 0.0)) colorjitter # ColorJitter() print(colorjitter.brightness) # None print(colorjitter.contrast) # None print(colorjitter.saturation) # None print(colorjitter.hue) # None origin_data = OxfordIIITPet( root="data", transform=None # transform=ColorJitter() # colorjitter = ColorJitter(brightness=0, # contrast=0, # saturation=0, # hue=0) # transform=ColorJitter(brightness=(1.0, 1.0), # contrast=(1.0, 1.0), # saturation=(1.0, 1.0), # hue=(0.0, 0.0)) ) p2bright_data = OxfordIIITPet( # `p` is plus. root="data", transform=ColorJitter(brightness=2.0) # transform=ColorJitter(brightness=(0.0, 3.0)) ) p2p2bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(2.0, 2.0)) ) p05p05bright_data = OxfordIIITPet( root="data", transform=ColorJitter(brightness=(0.5, 0.5)) ) p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=2.0) # transform=ColorJitter(contrast=(0.0, 3.0)) ) p2p2contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(2.0, 2.0)) ) p05p05contra_data = OxfordIIITPet( root="data", transform=ColorJitter(contrast=(0.5, 0.5)) ) p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=2.0) # transform=ColorJitter(saturation=(0.0, 3.0)) ) p2p2satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(2.0, 2.0)) ) p05p05satura_data = OxfordIIITPet( root="data", transform=ColorJitter(saturation=(0.5, 0.5)) ) p05hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=0.5) # transform=ColorJitter(hue=(-0.5, 0.5)) ) p025p025hue_data = OxfordIIITPet( root="data", transform=ColorJitter(hue=(0.25, 0.25)) ) m025m025hue_data = OxfordIIITPet( # `m` is minus. root="data", transform=ColorJitter(hue=(-0.25, -0.25)) ) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(10, 5)) plt.suptitle(t=main_title, y=0.8, fontsize=14) for i, (im, _) in zip(range(1, 6), data): plt.subplot(1, 5, i) plt.imshow(X=im) plt.xticks(ticks=[]) plt.yticks(ticks=[]) plt.tight_layout() plt.show() show_images(data=origin_data, main_title="origin_data") show_images(data=p2bright_data, main_title="p2bright_data") show_images(data=p2p2bright_data, main_title="p2p2bright_data") show_images(data=p05p05bright_data, main_title="p05p05bright_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2contra_data, main_title="p2contra_data") show_images(data=p2p2contra_data, main_title="p2p2contra_data") show_images(data=p05p05contra_data, main_title="p05p05contra_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p2satura_data, main_title="p2satura_data") show_images(data=p2p2satura_data, main_title="p2p2satura_data") show_images(data=p05p05satura_data, main_title="p05p05satura_data") show_images(data=origin_data, main_title="origin_data") show_images(data=p05hue_data, main_title="p05hue_data") show_images(data=p025p025hue_data, main_title="p025p025hue_data") show_images(data=m025m025hue_data, main_title="m025m025hue_data")
위 내용은 PyTorch의 ColorJitter의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Linux 터미널에서 Python 사용 ...

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.
