이벤트 기반 구문 분석은 대규모 JSON 응답에 대한 JSON 스트림 디코딩 효율성을 어떻게 향상시킬 수 있습니까?
이벤트 중심 구문 분석으로 JSON 스트림 디코딩
대규모 배열이 포함된 대규모 JSON 응답을 처리할 때 전체 응답을 메모리로 디코딩하면 상당한 리소스를 소비하고 성능에 영향을 미칩니다. 이 문제를 완화하기 위해 json.Decoder를 사용한 이벤트 중심 구문 분석을 사용하여 JSON 스트림을 더 작은 덩어리로 분할하고 점진적으로 처리할 수 있습니다.
Decoder.Token()을 사용한 이벤트 중심 구문 분석
json.Decoder는 Token() 메서드를 제공합니다. 이를 통해 JSON 스트림에서 다음 토큰만 구문 분석할 수 있습니다. 전체 입력을 소비합니다. 이를 통해 JSON 스트림을 객체별로 점진적으로 구문 분석하고 처리할 수 있습니다.
JSON 스트림 처리
JSON 스트림을 처리하기 위해 상태 시스템을 사용할 수 있습니다. JSON 객체의 구조를 추적하고 이에 따라 토큰을 처리합니다. 다음 단계에서는 프로세스를 간략하게 설명합니다.
- 개방 개체 구분 기호 읽기: JSON 응답은 개체의 시작을 나타내는 여는 중괄호({)로 시작될 것으로 예상됩니다. .
- 속성 및 값 구문 분석: JSON 스트림을 반복하면서 속성 이름을 발견합니다. (키) 및 해당 값. Decoder.Decode()를 사용하여 이러한 속성과 값을 디코딩할 수 있습니다.
- 배열 처리: 배열 키(예제에서는 "items")를 발견하면 배열 구분 기호( [). 그런 다음 배열 요소를 반복하면서 각 항목을 구문 분석하고 처리합니다.
- 개별 항목 처리: 각 항목(대형 개체)에 대해 구조화된 유형(예: LargeObject)으로 디코딩합니다. Decoder.Decode() 사용.
- 닫는 구분 기호 읽기: 처리 후 배열의 경우 닫는 대괄호(])가 필요합니다. 마찬가지로 닫는 중괄호(})는 JSON 객체의 끝을 나타낼 것으로 예상됩니다.
오류 처리
프로세스 전체에서 오류를 처리하는 것이 중요합니다. 정확하고 일관된 실행을 보장합니다. 사용자 정의 오류 처리기 기능은 오류 관리를 단순화하고 명확한 오류 메시지를 제공할 수 있습니다.
구현 예
다음은 제공된 입력 JSON 형식을 기반으로 한 구현 예입니다.
package main import ( "encoding/json" "fmt" "log" ) type LargeObject struct { Id string `json:"id"` Data string `json:"data"` } // Simplified error handling function func he(err error) { if err != nil { log.Fatal(err) } } func main() { // Example JSON stream jsonStream := `{ "somefield": "value", "otherfield": "othervalue", "items": [ { "id": "1", "data": "data1" }, { "id": "2", "data": "data2" }, { "id": "3", "data": "data3" }, { "id": "4", "data": "data4" } ] }` dec := json.NewDecoder(strings.NewReader(jsonStream)) // Read opening object t, err := dec.Token() he(err) if delim, ok := t.(json.Delim); !ok || delim != '{' { log.Fatal("Expected object") } // Read properties for dec.More() { t, err = dec.Token() he(err) prop := t.(string) if prop != "items" { var v interface{} he(dec.Decode(&v)) log.Printf("Property '%s' = %v", prop, v) continue } // Read "items" array t, err = dec.Token() he(err) if delim, ok := t.(json.Delim); !ok || delim != '[' { log.Fatal("Expected array") } // Read and process items for dec.More() { lo := LargeObject{} he(dec.Decode(&lo)) fmt.Printf("Item: %+v\n", lo) } // Read array closing t, err = dec.Token() he(err) if delim, ok := t.(json.Delim); !ok || delim != ']' { log.Fatal("Expected array closing") } } // Read closing object t, err = dec.Token() he(err) if delim, ok := t.(json.Delim); !ok || delim != '}' { log.Fatal("Expected object closing") } }
이 구현에는 유효한 JSON 개체가 필요합니다. 잘못된 형식이나 불완전한 JSON 입력을 처리하도록 오류 처리를 확장할 수 있습니다.
위 내용은 이벤트 기반 구문 분석은 대규모 JSON 응답에 대한 JSON 스트림 디코딩 효율성을 어떻게 향상시킬 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

Golang은 동시성에서 C보다 낫고 C는 원시 속도에서 Golang보다 낫습니다. 1) Golang은 Goroutine 및 Channel을 통해 효율적인 동시성을 달성하며, 이는 많은 동시 작업을 처리하는 데 적합합니다. 2) C 컴파일러 최적화 및 표준 라이브러리를 통해 하드웨어에 가까운 고성능을 제공하며 극도의 최적화가 필요한 애플리케이션에 적합합니다.

goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity, 효율성, 및 콘크리 론 피처

Golang은 빠른 개발 및 동시 시나리오에 적합하며 C는 극도의 성능 및 저수준 제어가 필요한 시나리오에 적합합니다. 1) Golang은 쓰레기 수집 및 동시성 메커니즘을 통해 성능을 향상시키고, 고전성 웹 서비스 개발에 적합합니다. 2) C는 수동 메모리 관리 및 컴파일러 최적화를 통해 궁극적 인 성능을 달성하며 임베디드 시스템 개발에 적합합니다.

goimpactsdevelopmentpositively throughlyspeed, 효율성 및 단순성.

C는 하드웨어 리소스 및 고성능 최적화가 직접 제어되는 시나리오에 더 적합하지만 Golang은 빠른 개발 및 높은 동시성 처리가 필요한 시나리오에 더 적합합니다. 1.C의 장점은 게임 개발과 같은 고성능 요구에 적합한 하드웨어 특성 및 높은 최적화 기능에 가깝습니다. 2. Golang의 장점은 간결한 구문 및 자연 동시성 지원에 있으며, 이는 동시성 서비스 개발에 적합합니다.

Golang과 Python은 각각 고유 한 장점이 있습니다. Golang은 고성능 및 동시 프로그래밍에 적합하지만 Python은 데이터 과학 및 웹 개발에 적합합니다. Golang은 동시성 모델과 효율적인 성능으로 유명하며 Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명합니다.

Golang과 C의 성능 차이는 주로 메모리 관리, 컴파일 최적화 및 런타임 효율에 반영됩니다. 1) Golang의 쓰레기 수집 메커니즘은 편리하지만 성능에 영향을 줄 수 있습니다. 2) C의 수동 메모리 관리 및 컴파일러 최적화는 재귀 컴퓨팅에서 더 효율적입니다.
