목차
코드 스멜 09 - 데드 코드
맥시 콘티에리 ・ 2022년 10월 24일
코드 스멜 54 - 앵커 보트
코드 냄새 148 - 할 일
003 리팩토링 - 상수 추출
손쉬운 리팩토링으로 코드를 개선하는 방법
백엔드 개발 파이썬 튜토리얼 리팩토링 - 데드 코드 제거

리팩토링 - 데드 코드 제거

Dec 29, 2024 pm 05:34 PM

쓰레기 청소

TL;DR: 사용하지 않는 함수, 상수 및 "경우에 따른" 코드를 제거하세요.

해결된 문제

  • 데드 코드

  • 경우에 따른 코드

  • 유지보수성 감소

  • 닻배

  • 인지 부하

관련 코드 냄새

Refactoring  - Remove Dead Code

코드 스멜 09 - 데드 코드

맥시 콘티에리 ・ 2020년 10월 28일

#코드뉴비 #지도 시간
Refactoring  - Remove Dead Code

코드 스멜 54 - 앵커 보트

맥시 콘티에리 ・ 2021년 1월 6일

#코드뉴비 #웹개발 #지도 시간 #클린코드
Refactoring  - Remove Dead Code

코드 냄새 148 - 할 일

맥시 콘티에리 ・ 2022년 7월 13일

#자바스크립트 #웹개발 #초보자 #프로그램 작성

단계

  1. 코드의 기능 적용 범위가 양호한지 확인하세요.

  2. 코드를 검토하거나 정적 분석 도구를 사용하여 사용하지 않는 함수와 상수를 식별하세요.

  3. 혹시 추가된 추측성 코드를 분석해 보세요.

  4. 불필요하거나 사용하지 않는 것을 제거하세요.

  5. 코드에 대해 포괄적인 회귀 테스트를 수행합니다.

샘플 코드

전에

from flask import Flask, jsonify, make_response

app = Flask(__name__)

HTTP_100_CONTINUE = 100
HTTP_202_ACCEPTED = 202  # Not used
HTTP_204_NO_CONTENT = 204 # Not Used
HTTP_302_FOUND = 302 # Not Used
HTTP_400_BAD_REQUEST = 400  # Not Used
HTTP_401_UNAUTHORIZED = 401 # Not Used
HTTP_403_FORBIDDEN = 403
HTTP_404_NOT_FOUND = 404
HTTP_410_GONE = 410
HTTP_500_INTERNAL_SERVER_ERROR = 500
HTTP_501_NOT_IMPLEMENTED = 501

probe_telemetry = {
    "temperature": {"solar_panels": 150, "instrument_1": 50},
    "position": {"x": 1000000, "y": 2000000, "z": 3000000, 
    "velocity": {"vx": 100, "vy": 200, "vz": 300}},
    "status": {"power_level": 95, "communication_status": "OK"}
}

@app.route('/api/v1/probe/telemetry', methods=['GET'])
def get_telemetry():
    return jsonify(probe_telemetry), HTTP_200_OK

# The following function is not invoked 
# and not implemented
# It is a dead placeholder
@app.route('/api/v1/probe/send_command', methods=['POST'])
def send_command():
    return jsonify({"message": "Command endpoint not implemented yet."}), 
       HTTP_501_NOT_IMPLEMENTED

@app.route('/api/v1/probe/data', methods=['GET'])
def get_data():
    return jsonify({"message": "Data not found"}), 
       HTTP_404_NOT_FOUND

@app.route('/api/v1/probe/redirect', methods=['GET'])
def redirect_endpoint():
    response = make_response(jsonify({"message": "Redirecting..."}), 
       HTTP_301_MOVED_PERMANENTLY)
    response.headers['Location'] = '/api/v1/probe/telemetry'
    return response

@app.route('/api/v1/probe/not_modified', methods=['GET'])
def not_modified_endpoint():
    response = make_response(jsonify({"message": "Not Modified"}), 
       HTTP_304_NOT_MODIFIED)
    response.headers['ETag'] = 'some_etag'
    return response

@app.route('/api/v1/probe/gone', methods=['GET'])
def gone_endpoint():
    return jsonify({"message": "Resource permanently gone"}),
       HTTP_410_GONE
로그인 후 복사

후에

# 1. Ensure your code has good functional coverage.

from flask import Flask, jsonify, make_response
from http import HTTPStatus

app = Flask(__name__)

# 2. Identify unused functions and constants 
# by reviewing your code or using static analysis tools.
HTTP_200_OK = HTTPStatus.OK
HTTP_301_MOVED_PERMANENTLY = HTTPStatus.MOVED_PERMANENTLY
HTTP_304_NOT_MODIFIED = HTTPStatus.NOT_MODIFIED
HTTP_404_NOT_FOUND = HTTPStatus.NOT_FOUND
HTTP_410_GONE = HTTPStatus.GONE
HTTP_501_NOT_IMPLEMENTED = HTTPStatus.NOT_IMPLEMENTED

probe_telemetry = {
    "temperature": {"solar_panels": 150, "instrument_1": 50},
    "position": {"x": 1000000, "y": 2000000, "z": 3000000, 
    "velocity": {"vx": 100, "vy": 200, "vz": 300}},
    "status": {"power_level": 95, "communication_status": "OK"}
}

@app.route('/api/v1/probe/telemetry', methods=['GET'])
def get_telemetry():
    return jsonify(probe_telemetry), HTTP_200_OK

# 3. Analyze the added speculative code, just in case.

@app.route('/api/v1/probe/send_command', methods=['POST'])
def send_command():
    return jsonify({"message": "Command endpoint not implemented yet."}), 
       HTTP_501_NOT_IMPLEMENTED

@app.route('/api/v1/probe/data', methods=['GET'])
def get_data():
    return jsonify({"message": "Data not found"}), 
      HTTP_404_NOT_FOUND

# 4. Remove anything unnecessary or unused.

# 5. Perform comprehensive regression testing on your code.
로그인 후 복사

유형

[X] 반자동

안전

이 리팩토링은 변경 후 애플리케이션을 철저히 테스트하면 안전합니다. 정적 분석 도구를 사용하면 아직 사용 중인 항목을 제거하지 않도록 할 수 있습니다.

코드가 더 나은 이유는 무엇입니까?

사용하지 않는 요소를 제거하여 명확성을 높이고 복잡성을 줄입니다.

코드를 이해하고 유지 관리하기가 더 쉬워집니다.

추측적인 코드를 줄이면 현재의 실제 요구 사항에 계속 집중할 수 있습니다.

전단사를 어떻게 개선합니까?

데드 코드와 추측성 요소는 소프트웨어와 실제 모델 간의 전단을 깨뜨립니다.

이러한 요소를 제거하면 코드가
더욱 깔끔하고 현실에 가깝게 만드는 MAPPER.

제한사항

데드 코드를 제거하려면 실제로 사용되지 않는 코드라는 확신이 필요합니다.

이 프로세스는 정적 분석이나 철저한 코드베이스 지식에 의존하므로 강력한 도구가 없으면 오류가 발생할 수 있습니다.

AI를 사용한 리팩터링

Without Proper Instructions With Specific Instructions
ChatGPT ChatGPT
Claude Claude
Perplexity Perplexity
Copilot Copilot
Gemini Gemini

태그

  • 블로터

관련 리팩토링

Refactoring  - Remove Dead Code

003 리팩토링 - 상수 추출

맥시 콘티에리 ・ 2022년 1월 2일

#앗 #프로그램 작성 #리팩토링 #클린코드

크레딧

Pixabay에서 가져온 Peter H의 이미지


이 글은 리팩토링 시리즈의 일부입니다.

Refactoring  - Remove Dead Code

손쉬운 리팩토링으로 코드를 개선하는 방법

맥시 콘티에리 ・ 2022년 10월 24일

#웹개발 #초보자 #프로그램 작성 #지도 시간

위 내용은 리팩토링 - 데드 코드 제거의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles