무료 LLM 모델 및 기술 자료를 사용하여 자신만의 RAG를 만드는 방법
이 기사에서는 최신 변환기 기반 모델을 결합한 간단하면서도 효과적인 질문 답변 시스템의 구현을 살펴봅니다. 시스템은 답변 생성을 위해 T5(Text-to-Text Transfer Transformer)를 사용하고 의미 유사성 일치를 위해 Sentence Transformer를 사용합니다.
이전 기사에서는 무료 기본 LLM 모델을 사용하여 웹 인터페이스로 간단한 번역 API를 만드는 방법을 설명했습니다. 이번에는 무료 변환기 기반 LLM 모델과 지식 기반을 사용하여 검색 증강 생성(RAG) 시스템을 구축하는 방법을 살펴보겠습니다.
RAG(Retrieval-Augmented Generation)는 두 가지 핵심 구성 요소를 결합한 기술입니다.
검색: 먼저 지식 기반(예: 문서, 데이터베이스 등)을 검색하여 특정 쿼리에 대한 관련 정보를 찾습니다. 여기에는 일반적으로 다음이 포함됩니다.
- 텍스트를 임베딩(의미를 나타내는 숫자 벡터)으로 변환
- 유사성 척도(예: 코사인 유사성)를 사용하여 유사한 콘텐츠 찾기
- 가장 관련성이 높은 정보 선택
세대: 그런 다음 언어 모델(예: 코드의 T5)을 사용하여 다음을 통해 응답을 생성합니다.
검색된 정보를 원래 질문과 결합
이 맥락을 기반으로 자연어 응답 생성
코드:
- SentenceTransformer는 임베딩을 생성하여 검색 부분을 처리합니다
- T5 모델은 답변을 생성하여 세대 부분을 담당합니다
RAG의 장점:
- 특정 지식을 바탕으로 답변하므로 더욱 정확한 답변
- 순수 LLM 응답에 비해 환각 감소
- 최신 정보 또는 도메인별 정보에 액세스하는 기능
- 순수 세대보다 더 통제 가능하고 투명합니다
시스템 아키텍처 개요
구현은 두 가지 주요 구성요소를 조정하는 SimpleQASystem 클래스로 구성됩니다.
- 문장변환기를 이용한 의미검색 시스템
- T5를 이용한 답변 생성 시스템
여기에서 최신 버전의 소스 코드를 다운로드할 수 있습니다: https://github.com/alexander-uspenskiy/rag_project
시스템 다이어그램
RAG 프로젝트 설정 가이드
이 가이드는 macOS와 Windows 모두에서 RAG(Retrieval-Augmented Generation) 프로젝트를 설정하는 데 도움이 됩니다.
전제 조건
macOS의 경우:
Homebrew 설치(아직 설치하지 않은 경우):
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
Homebrew를 사용하여 Python 3.8 설치
양조 설치 python@3.10
Windows의 경우:
python.org에서 Python 3.8을 다운로드하여 설치하세요
설치 중에 "PATH에 Python 추가"를 확인하세요
프로젝트 설정
1단계: 프로젝트 디렉터리 생성
macOS:
mkdir RAG_project
cd RAG_프로젝트
창:
mkdir RAG_project
cd RAG_프로젝트
2단계: 가상 환경 설정
macOS:
python3 -m venv venv
소스 venv/bin/활성화
Windows:
python -m venv venv
venvScripts활성화
**핵심 구성요소
- 초기화**
def __init__(self): self.model_name = 't5-small' self.tokenizer = T5Tokenizer.from_pretrained(self.model_name) self.model = T5ForConditionalGeneration.from_pretrained(self.model_name) self.encoder = SentenceTransformer('paraphrase-MiniLM-L6-v2')
시스템은 두 가지 기본 모델로 초기화됩니다.
T5-small: 답변 생성을 위한 T5 모델의 소형 버전
paraphrase-MiniLM-L6-v2: 텍스트를 의미 있는 벡터로 인코딩하기 위한 문장 변환기 모델
2. 데이터세트 준비
def prepare_dataset(self, data: List[Dict[str, str]]): self.answers = [item['answer'] for item in data] self.answer_embeddings = [] for answer in self.answers: embedding = self.encoder.encode(answer, convert_to_tensor=True) self.answer_embeddings.append(embedding)
데이터세트 준비 단계:
- 입력 데이터에서 답변을 추출합니다
- 문장 변환기를 사용하여 각 답변에 대한 임베딩을 생성합니다
- 빠른 검색을 위해 답변과 임베딩을 모두 저장합니다
시스템 작동 방식
1. 질문 처리
사용자가 질문을 제출하면 시스템은 다음 단계를 따릅니다.
임베딩 생성: 질문은 답변에 사용된 것과 동일한 문장 변환기 모델을 사용하여 벡터 표현으로 변환됩니다.
의미 검색: 시스템은 다음을 통해 가장 관련성이 높은 저장된 답변을 찾습니다.
- 질문 임베딩과 모든 답변 임베딩 간의 코사인 유사성 계산
- 유사도 점수가 가장 높은 답변 선택 컨텍스트 형성: 선택된 답변은 T5가 최종 응답을 생성하는 컨텍스트가 됩니다.
2. 답변생성
def get_answer(self, question: str) -> str: # ... semantic search logic ... input_text = f"Given the context, what is the answer to the question: {question} Context: {context}" input_ids = self.tokenizer(input_text, max_length=512, truncation=True, padding='max_length', return_tensors='pt').input_ids outputs = self.model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True, no_repeat_ngram_size=2
답변 생성 과정:
- 질문과 맥락을 결합하여 T5에 대한 프롬프트로 만듭니다
- 최대 512개의 토큰 길이로 입력 텍스트를 토큰화합니다
- 다음 매개변수를 사용하여 빔 검색을 사용하여 답변을 생성합니다.
- max_length=50: 답변 길이 제한
- num_beams=4: 4개의 빔으로 빔 검색을 사용합니다
- early_stopping=True: 모든 빔이 종료 토큰에 도달하면 생성을 중지합니다
- no_repeat_ngram_size=2: 바이그램 반복 방지
3. 답변 청소
def __init__(self): self.model_name = 't5-small' self.tokenizer = T5Tokenizer.from_pretrained(self.model_name) self.model = T5ForConditionalGeneration.from_pretrained(self.model_name) self.encoder = SentenceTransformer('paraphrase-MiniLM-L6-v2')
- 중복된 연속 단어 제거(대소문자 구분)
- 답변의 첫 글자를 대문자로 합니다
- 추가 공백 제거
전체 소스 코드
여기에서 최신 버전의 소스 코드를 다운로드할 수 있습니다: https://github.com/alexander-uspenskiy/rag_project
def prepare_dataset(self, data: List[Dict[str, str]]): self.answers = [item['answer'] for item in data] self.answer_embeddings = [] for answer in self.answers: embedding = self.encoder.encode(answer, convert_to_tensor=True) self.answer_embeddings.append(embedding)
메모리 관리:
시스템은 메모리 문제를 피하기 위해 CPU를 명시적으로 사용합니다
필요한 경우 임베딩이 CPU 텐서로 변환됩니다
입력 길이는 토큰 512개로 제한됩니다
오류 처리:
- 코드 전체에 걸친 포괄적인 try-제외 블록
- 디버깅을 위한 의미 있는 오류 메시지
- 초기화되지 않은 구성 요소에 대한 유효성 검사
사용예
def get_answer(self, question: str) -> str: # ... semantic search logic ... input_text = f"Given the context, what is the answer to the question: {question} Context: {context}" input_ids = self.tokenizer(input_text, max_length=512, truncation=True, padding='max_length', return_tensors='pt').input_ids outputs = self.model.generate(input_ids, max_length=50, num_beams=4, early_stopping=True, no_repeat_ngram_size=2
터미널에서 실행
제한 사항 및 잠재적인 개선 사항
확장성:
현재 구현에서는 모든 임베딩을 메모리에 유지합니다
대규모 응용프로그램을 위한 벡터 데이터베이스로 개선될 수 있습니다
답변 품질:
제공된 답변 데이터세트의 품질에 크게 의존합니다
T5-small
의 컨텍스트 창에 의해 제한됨
답변 확인 또는 신뢰도 점수를 통해 이점을 얻을 수 있습니다
공연:
- 대규모 애플리케이션의 경우 CPU만 사용하면 속도가 느려질 수 있습니다
- 일괄 처리로 최적화 가능
- 자주 묻는 질문에 대한 캐싱 구현 가능
결론
이 구현은 의미 체계 검색과 변환기 기반 텍스트 생성의 장점을 결합하여 질문 답변 시스템을 위한 견고한 기반을 제공합니다. 보다 일관되고 안정적인 답변을 얻을 수 있는 더 나은 방법을 찾으려면 모델 매개변수(예: max_length, num_beams, early_stopping, no_repeat_ngram_size 등)를 자유롭게 사용해 보세요. 개선의 여지가 있지만 현재 구현은 복잡성과 기능 간의 적절한 균형을 제공하므로 교육 목적과 중소 규모 애플리케이션에 적합합니다.
즐거운 코딩하세요!
위 내용은 무료 LLM 모델 및 기술 자료를 사용하여 자신만의 RAG를 만드는 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
