Pandas DataFrame 열을 여러 행으로 분해하는 방법은 무엇입니까?
Pandas DataFrame의 열을 여러 행으로 중첩 해제(분해)하는 방법
Pandas에서 열을 폭발하려면 데이터를 단일 행에서 여러 행으로 변환해야 합니다. . 이는 목록 유형 셀이 포함된 열이 있고 이를 개별 행으로 분할해야 할 때 유용합니다.
목록이 포함된 'B' 열이 있는 DataFrame을 고려해 보세요.
df = pd.DataFrame({'A': [1, 2], 'B': [[1, 2], [1, 2]]}) Output: A B 0 1 [1, 2] 1 2 [1, 2]
이 열 'B'를 분해하면 다양한 방법을 제시합니다.
방법 0 [Pandas >= 0.25]
Pandas 0.25부터 열 하나만 분해해야 하는 경우 pandas.DataFrame.explode 함수를 사용하세요.
df.explode('B') Output: A B 0 1 1 1 1 2 3 2 1 4 2 2
방법 1
pd.Series 적용 (이해하기 쉽지만 그렇지 않음 성능을 위해 권장됨):
df.set_index('A').B.apply(pd.Series).stack().reset_index(level=0).rename(columns={0:'B'})
방법 2
DataFrame 생성자와 함께 반복 사용:
df = pd.DataFrame({'A': df.A.repeat(df.B.str.len()), 'B': np.concatenate(df.B.values)})
방법 3
다시 생성 목록:
pd.DataFrame([[x] + [z] for x, y in df.values for z in y], columns=df.columns)
방법 4
reindex 또는 loc 사용:
df.reindex(df.index.repeat(df.B.str.len())).assign(B=np.concatenate(df.B.values))
방법 5
목록이 고유한 내용만 포함 값:
from collections import ChainMap d = dict(ChainMap(*map(dict.fromkeys, df['B'], df['A']))) pd.DataFrame(list(d.items()), columns=df.columns[::-1])
방법 6
고성능을 위해 NumPy 사용:
newvalues = np.dstack((np.repeat(df.A.values, list(map(len, df.B.values))), np.concatenate(df.B.values))) pd.DataFrame(data=newvalues[0], columns=df.columns)
방법 7
itertools 사용 사이클과 chain:
from itertools import cycle, chain l = df.values.tolist() l1 = [list(zip([x[0]], cycle(x[1])) if len([x[0]]) > len(x[1]) else list(zip(cycle([x[0]]), x[1]))) for x in l] pd.DataFrame(list(chain.from_iterable(l1)), columns=df.columns)
여러 열로 일반화
여러 폭발 열을 처리하기 위해 함수를 정의할 수 있습니다.
def unnesting(df, explode): idx = df.index.repeat(df[explode[0]].str.len()) df1 = pd.concat([ pd.DataFrame({x: np.concatenate(df[x].values)}) for x in explode], axis=1) df1.index = idx return df1.join(df.drop(explode, 1), how='left') unnesting(df, ['B', 'C'])
열- 현명한 중첩 해제
목록을 수평으로 확장하려면 pd.DataFrame을 사용하세요. 생성자:
df.join(pd.DataFrame(df.B.tolist(), index=df.index).add_prefix('B_'))
위 내용은 Pandas DataFrame 열을 여러 행으로 분해하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.
