PyTorch의 스탠포드 자동차
커피 한잔 사주세요😄
*내 게시물은 Stanford Cars에 대해 설명합니다.
StanfordCars()는 아래와 같이 Stanford Cars 데이터세트를 사용할 수 있습니다.
*메모:
- 첫 번째 인수는 루트(필수 유형:str 또는 pathlib.Path)입니다. *절대경로, 상대경로 모두 가능합니다.
- 두 번째 인수는 분할(Optional-Default:"train"-Type:str)입니다. *"train"(8,144 이미지) 또는 "test"(8,041 이미지)를 설정할 수 있습니다.
- 세 번째 인수는 변환(Optional-Default:None-Type:callable)입니다.
- 네 번째 인수는 target_transform(Optional-Default:None-Type:callable)입니다.
- 다섯 번째 인수는 download(Optional-Default:False-Type:bool)입니다.
*메모:
- True일 경우 원본 URL이 깨져 오류가 발생하므로 False로 유지하세요.
- 따라서 아래와 같이 여기에서 archive.zip, 여기에서 archive.zip, car_devkit.tgz를 data/stanford_cars/에 수동으로 다운로드하여 추출해야 합니다.
*메모:
- cars_test_annos_withlabels (1).mat의 이름을 cars_test_annos_withlabels.mat로 바꿔야 합니다.
- cars_annos.mat 및 cars_annos (2).mat는 필요하지 않으며 중복된 파일도 일부 있습니다.
- 안내도 보실 수 있습니다.
data └-stanford_cars |-cars_test_annos_withlabels.mat |-cars_test | └-*.jpg |-cars_train | └-*.jpg └-devkit |-cars_meta.mat |-cars_test_annos.mat |-cars_train_annos.mat |-eval_train.m |-README.txt └-train_perfect_preds.txt
from torchvision.datasets import StanfordCars train_data = StanfordCars( root="data" ) train_data = StanfordCars( root="data", split="train", transform=None, target_transform=None, download=False ) test_data = StanfordCars( root="data", split="test" ) len(train_data), len(test_data) # (8144, 8041) train_data # Dataset StanfordCars # Number of datapoints: 8144 # Root location: data train_data.root # 'data' train_data._split # 'train' print(train_data.transform) # None print(train_data.target_transform) # None train_data.download # <bound method StanfordCars.download of Dataset StanfordCars # Number of datapoints: 8144 # Root location: data> len(train_data.classes), train_data.classes # (196, # ['AM General Hummer SUV 2000', 'Acura RL Sedan 2012', 'Acura TL Sedan 2012', # 'Acura TL Type-S 2008', ..., 'Volvo 240 Sedan 1993', # 'Volvo XC90 SUV 2007', 'smart fortwo Convertible 2012']) train_data[0] # (<PIL.Image.Image image mode=RGB size=600x400>, 13) train_data[1] # (<PIL.Image.Image image mode=RGB size=900x675>, 2) train_data[2] # (<PIL.Image.Image image mode=RGB size=640x480>, 90) train_data[3] # (<PIL.Image.Image image mode=RGB size=2100x1386>, 133) train_data[4] # (<PIL.Image.Image image mode=RGB size=144x108>, 105) import matplotlib.pyplot as plt def show_images(data, main_title=None): plt.figure(figsize=(12, 5)) plt.suptitle(t=main_title, y=1.0, fontsize=14) for i, (im, lab) in zip(range(1, 11), data): plt.subplot(2, 5, i) plt.imshow(X=im) plt.title(label=lab) plt.tight_layout() plt.show() show_images(data=train_data, main_title="train_data") show_images(data=test_data, main_title="test_data") show_images(data=train_data, ims=train_ims, main_title="train_data") show_images(data=train_data, ims=val_ims, main_title="val_data") show_images(data=test_data, ims=test_ims, main_title="test_data")
위 내용은 PyTorch의 스탠포드 자동차의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
