백엔드 개발 Golang 목록을 개별 고루틴에 의해 처리되는 더 작은 덩어리로 분할했음에도 불구하고 'moving_avg_concurrent2'의 성능이 동시성이 향상되지 않는 이유는 무엇입니까?

목록을 개별 고루틴에 의해 처리되는 더 작은 덩어리로 분할했음에도 불구하고 'moving_avg_concurrent2'의 성능이 동시성이 향상되지 않는 이유는 무엇입니까?

Dec 23, 2024 pm 04:38 PM

Why is the performance of `moving_avg_concurrent2` not improving with increased concurrency, despite splitting the list into smaller chunks processed by individual goroutines?

동시 실행이 증가해도 Moving_avg_concurrent2의 성능이 향상되지 않는 이유는 무엇입니까?

moving_avg_concurrent2는 목록을 더 작은 조각으로 나누고 단일 고루틴을 사용하여 각 조각을 처리합니다. 어떤 이유로(이유는 명확하지 않음) 하나의 고루틴을 사용하는 이 함수는 Moving_avg_serial4보다 빠르지만 여러 고루틴을 사용하면 Moving_avg_serial4보다 성능이 떨어지기 시작합니다.

moving_avg_concurrent3이 Moving_avg_serial4보다 훨씬 느린 이유는 무엇입니까?

고루틴을 사용할 때 Moving_avg_concurrent3의 성능은 Moving_avg_serial4보다 나쁩니다. num_goroutines를 늘리면 성능이 향상될 수 있지만, Moving_avg_serial4보다 여전히 나쁩니다.

고루틴은 가볍지만 완전 무료는 아니지만, 발생하는 오버헤드가 너무 커서 Moving_avg_serial4보다 느린 것이 가능합니까?

예, 고루틴은 가볍지만 무료는 아닙니다. 여러 고루틴을 사용하는 경우 고루틴을 시작하고 관리하고 예약하는 데 드는 오버헤드가 병렬 처리 증가로 인한 이점보다 클 수 있습니다.

코드

기능:

// 返回包含输入移动平均值的列表(已提供,即未优化)
func moving_avg_serial(input []float64, window_size int) []float64 {
    first_time := true
    var output = make([]float64, len(input))
    if len(input) > 0 {
        var buffer = make([]float64, window_size)
        // 初始化缓冲区为 NaN
        for i := range buffer {
            buffer[i] = math.NaN()
        }
        for i, val := range input {
            old_val := buffer[int((math.Mod(float64(i), float64(window_size))))]
            buffer[int((math.Mod(float64(i), float64(window_size))))] = val
            if !NaN_in_slice(buffer) && first_time {
                sum := 0.0
                for _, entry := range buffer {
                    sum += entry
                }
                output[i] = sum / float64(window_size)
                first_time = false
            } else if i > 0 && !math.IsNaN(output[i-1]) && !NaN_in_slice(buffer) {
                output[i] = output[i-1] + (val-old_val)/float64(window_size) // 无循环的解决方案
            } else {
                output[i] = math.NaN()
            }
        }
    } else { // 空输入
        fmt.Println("moving_avg is panicking!")
        panic(fmt.Sprintf("%v", input))
    }
    return output
}

// 返回包含输入移动平均值的列表
// 重新排列控制结构以利用短路求值
func moving_avg_serial4(input []float64, window_size int) []float64 {
    first_time := true
    var output = make([]float64, len(input))
    if len(input) > 0 {
        var buffer = make([]float64, window_size)
        // 初始化缓冲区为 NaN
        for i := range buffer {
            buffer[i] = math.NaN()
        }
        for i := range input {
            //            fmt.Printf("in mvg_avg4: i=%v\n", i)
            old_val := buffer[int((math.Mod(float64(i), float64(window_size))))]
            buffer[int((math.Mod(float64(i), float64(window_size))))] = input[i]
            if first_time && !NaN_in_slice(buffer) {
                sum := 0.0
                for j := range buffer {
                    sum += buffer[j]
                }
                output[i] = sum / float64(window_size)
                first_time = false
            } else if i > 0 && !math.IsNaN(output[i-1]) /* && !NaN_in_slice(buffer)*/ {
                output[i] = output[i-1] + (input[i]-old_val)/float64(window_size) // 无循环的解决方案
            } else {
                output[i] = math.NaN()
            }
        }
    } else { // 空输入
        fmt.Println("moving_avg is panicking!")
        panic(fmt.Sprintf("%v", input))
    }
    return output
}

// 返回包含输入移动平均值的列表
// 将列表拆分为较小的片段以使用 goroutine,但不使用串行版本,即我们仅在开头具有 NaN,因此希望减少一些开销
// 仍然不能扩展(随着大小和 num_goroutines 的增加,性能下降)
func moving_avg_concurrent2(input []float64, window_size, num_goroutines int) []float64 {
    var output = make([]float64, window_size-1, len(input))
    for i := 0; i < window_size-1; i++ {
        output[i] = math.NaN()
    }
    if len(input) > 0 {
        num_items := len(input) - (window_size - 1)
        var barrier_wg sync.WaitGroup
        n := num_items / num_goroutines
        go_avg := make([][]float64, num_goroutines)
        for i := 0; i < num_goroutines; i++ {
            go_avg[i] = make([]float64, 0, num_goroutines)
        }

        for i := 0; i < num_goroutines; i++ {
            barrier_wg.Add(1)
            go func(go_id int) {
                defer barrier_wg.Done()

                // 计算边界
                var start, stop int
                start = go_id*int(n) + (window_size - 1) // 开始索引
                // 结束索引
                if go_id != (num_goroutines - 1) {
                    stop = start + n // 结束索引
                } else {
                    stop = num_items + (window_size - 1) // 结束索引
                }

                loc_avg := moving_avg_serial4(input[start-(window_size-1):stop], window_size)

                loc_avg = make([]float64, stop-start)
                current_sum := 0.0
                for i := start - (window_size - 1); i < start+1; i++ {
                    current_sum += input[i]
                }
                loc_avg[0] = current_sum / float64(window_size)
                idx := 1

                for i := start + 1; i < stop; i++ {
                    loc_avg[idx] = loc_avg[idx-1] + (input[i]-input[i-(window_size)])/float64(window_size)
                    idx++
                }

                go_avg[go_id] = append(go_avg[go_id], loc_avg...)

            }(i)
        }
        barrier_wg.Wait()

        for i := 0; i < num_goroutines; i++ {
            output = append(output, go_avg[i]...)
        }

    } else { // 空输入
        fmt.Println("moving_avg is panicking!")
        panic(fmt.Sprintf("%v", input))
    }
    return output
}

// 返回包含输入移动平均值的列表
// 模式改变,我们选择主工作者模式并生成将由 goroutine 计算的每个窗口
func compute_window_avg(input, output []float64, start, end int) {
    sum := 0.0
    size := end - start
    for _, val := range input[start:end] {
        sum += val
    }
    output[end-1] = sum / float64(size)
}

func moving_avg_concurrent3(input []float64, window_size, num_goroutines int) []float64 {
    var output = make([]float64, window_size-1, len(input))
    for i := 0; i < window_size-1; i++ {
        output[i] = math.NaN()
    }
    if len(input) > 0 {
        num_windows := len(input) - (window_size - 1)
        var output = make([]float64, len(input))
        for i := 0; i < window_size-1; i++ {
로그인 후 복사

위 내용은 목록을 개별 고루틴에 의해 처리되는 더 작은 덩어리로 분할했음에도 불구하고 'moving_avg_concurrent2'의 성능이 동시성이 향상되지 않는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Golang vs. Python : 성능 및 확장 성 Golang vs. Python : 성능 및 확장 성 Apr 19, 2025 am 12:18 AM

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

Golang 및 C : 동시성 대 원시 속도 Golang 및 C : 동시성 대 원시 속도 Apr 21, 2025 am 12:16 AM

Golang은 동시성에서 C보다 낫고 C는 원시 속도에서 Golang보다 낫습니다. 1) Golang은 Goroutine 및 Channel을 통해 효율적인 동시성을 달성하며, 이는 많은 동시 작업을 처리하는 데 적합합니다. 2) C 컴파일러 최적화 및 표준 라이브러리를 통해 하드웨어에 가까운 고성능을 제공하며 극도의 최적화가 필요한 애플리케이션에 적합합니다.

Golang의 영향 : 속도, 효율성 및 단순성 Golang의 영향 : 속도, 효율성 및 단순성 Apr 14, 2025 am 12:11 AM

goimpactsdevelopmentpositively throughlyspeed, 효율성 및 단순성.

GOT GO로 시작 : 초보자 가이드 GOT GO로 시작 : 초보자 가이드 Apr 26, 2025 am 12:21 AM

goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity, 효율성, 및 콘크리 론 피처

Golang vs. C : 성능 및 속도 비교 Golang vs. C : 성능 및 속도 비교 Apr 21, 2025 am 12:13 AM

Golang은 빠른 개발 및 동시 시나리오에 적합하며 C는 극도의 성능 및 저수준 제어가 필요한 시나리오에 적합합니다. 1) Golang은 쓰레기 수집 및 동시성 메커니즘을 통해 성능을 향상시키고, 고전성 웹 서비스 개발에 적합합니다. 2) C는 수동 메모리 관리 및 컴파일러 최적화를 통해 궁극적 인 성능을 달성하며 임베디드 시스템 개발에 적합합니다.

Golang vs. Python : 주요 차이점과 유사성 Golang vs. Python : 주요 차이점과 유사성 Apr 17, 2025 am 12:15 AM

Golang과 Python은 각각 고유 한 장점이 있습니다. Golang은 고성능 및 동시 프로그래밍에 적합하지만 Python은 데이터 과학 및 웹 개발에 적합합니다. Golang은 동시성 모델과 효율적인 성능으로 유명하며 Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명합니다.

Golang 및 C : 성능 상충 Golang 및 C : 성능 상충 Apr 17, 2025 am 12:18 AM

Golang과 C의 성능 차이는 주로 메모리 관리, 컴파일 최적화 및 런타임 효율에 반영됩니다. 1) Golang의 쓰레기 수집 메커니즘은 편리하지만 성능에 영향을 줄 수 있습니다. 2) C의 수동 메모리 관리 및 컴파일러 최적화는 재귀 컴퓨팅에서 더 효율적입니다.

C와 Golang : 성능이 중요 할 때 C와 Golang : 성능이 중요 할 때 Apr 13, 2025 am 12:11 AM

C는 하드웨어 리소스 및 고성능 최적화가 직접 제어되는 시나리오에 더 적합하지만 Golang은 빠른 개발 및 높은 동시성 처리가 필요한 시나리오에 더 적합합니다. 1.C의 장점은 게임 개발과 같은 고성능 요구에 적합한 하드웨어 특성 및 높은 최적화 기능에 가깝습니다. 2. Golang의 장점은 간결한 구문 및 자연 동시성 지원에 있으며, 이는 동시성 서비스 개발에 적합합니다.

See all articles