


목록을 개별 고루틴에 의해 처리되는 더 작은 덩어리로 분할했음에도 불구하고 'moving_avg_concurrent2'의 성능이 동시성이 향상되지 않는 이유는 무엇입니까?
동시 실행이 증가해도 Moving_avg_concurrent2의 성능이 향상되지 않는 이유는 무엇입니까?
moving_avg_concurrent2는 목록을 더 작은 조각으로 나누고 단일 고루틴을 사용하여 각 조각을 처리합니다. 어떤 이유로(이유는 명확하지 않음) 하나의 고루틴을 사용하는 이 함수는 Moving_avg_serial4보다 빠르지만 여러 고루틴을 사용하면 Moving_avg_serial4보다 성능이 떨어지기 시작합니다.
moving_avg_concurrent3이 Moving_avg_serial4보다 훨씬 느린 이유는 무엇입니까?
고루틴을 사용할 때 Moving_avg_concurrent3의 성능은 Moving_avg_serial4보다 나쁩니다. num_goroutines를 늘리면 성능이 향상될 수 있지만, Moving_avg_serial4보다 여전히 나쁩니다.
고루틴은 가볍지만 완전 무료는 아니지만, 발생하는 오버헤드가 너무 커서 Moving_avg_serial4보다 느린 것이 가능합니까?
예, 고루틴은 가볍지만 무료는 아닙니다. 여러 고루틴을 사용하는 경우 고루틴을 시작하고 관리하고 예약하는 데 드는 오버헤드가 병렬 처리 증가로 인한 이점보다 클 수 있습니다.
코드
기능:
// 返回包含输入移动平均值的列表(已提供,即未优化) func moving_avg_serial(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i, val := range input { old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = val if !NaN_in_slice(buffer) && first_time { sum := 0.0 for _, entry := range buffer { sum += entry } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) && !NaN_in_slice(buffer) { output[i] = output[i-1] + (val-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 重新排列控制结构以利用短路求值 func moving_avg_serial4(input []float64, window_size int) []float64 { first_time := true var output = make([]float64, len(input)) if len(input) > 0 { var buffer = make([]float64, window_size) // 初始化缓冲区为 NaN for i := range buffer { buffer[i] = math.NaN() } for i := range input { // fmt.Printf("in mvg_avg4: i=%v\n", i) old_val := buffer[int((math.Mod(float64(i), float64(window_size))))] buffer[int((math.Mod(float64(i), float64(window_size))))] = input[i] if first_time && !NaN_in_slice(buffer) { sum := 0.0 for j := range buffer { sum += buffer[j] } output[i] = sum / float64(window_size) first_time = false } else if i > 0 && !math.IsNaN(output[i-1]) /* && !NaN_in_slice(buffer)*/ { output[i] = output[i-1] + (input[i]-old_val)/float64(window_size) // 无循环的解决方案 } else { output[i] = math.NaN() } } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 将列表拆分为较小的片段以使用 goroutine,但不使用串行版本,即我们仅在开头具有 NaN,因此希望减少一些开销 // 仍然不能扩展(随着大小和 num_goroutines 的增加,性能下降) func moving_avg_concurrent2(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i < window_size-1; i++ { output[i] = math.NaN() } if len(input) > 0 { num_items := len(input) - (window_size - 1) var barrier_wg sync.WaitGroup n := num_items / num_goroutines go_avg := make([][]float64, num_goroutines) for i := 0; i < num_goroutines; i++ { go_avg[i] = make([]float64, 0, num_goroutines) } for i := 0; i < num_goroutines; i++ { barrier_wg.Add(1) go func(go_id int) { defer barrier_wg.Done() // 计算边界 var start, stop int start = go_id*int(n) + (window_size - 1) // 开始索引 // 结束索引 if go_id != (num_goroutines - 1) { stop = start + n // 结束索引 } else { stop = num_items + (window_size - 1) // 结束索引 } loc_avg := moving_avg_serial4(input[start-(window_size-1):stop], window_size) loc_avg = make([]float64, stop-start) current_sum := 0.0 for i := start - (window_size - 1); i < start+1; i++ { current_sum += input[i] } loc_avg[0] = current_sum / float64(window_size) idx := 1 for i := start + 1; i < stop; i++ { loc_avg[idx] = loc_avg[idx-1] + (input[i]-input[i-(window_size)])/float64(window_size) idx++ } go_avg[go_id] = append(go_avg[go_id], loc_avg...) }(i) } barrier_wg.Wait() for i := 0; i < num_goroutines; i++ { output = append(output, go_avg[i]...) } } else { // 空输入 fmt.Println("moving_avg is panicking!") panic(fmt.Sprintf("%v", input)) } return output } // 返回包含输入移动平均值的列表 // 模式改变,我们选择主工作者模式并生成将由 goroutine 计算的每个窗口 func compute_window_avg(input, output []float64, start, end int) { sum := 0.0 size := end - start for _, val := range input[start:end] { sum += val } output[end-1] = sum / float64(size) } func moving_avg_concurrent3(input []float64, window_size, num_goroutines int) []float64 { var output = make([]float64, window_size-1, len(input)) for i := 0; i < window_size-1; i++ { output[i] = math.NaN() } if len(input) > 0 { num_windows := len(input) - (window_size - 1) var output = make([]float64, len(input)) for i := 0; i < window_size-1; i++ {
위 내용은 목록을 개별 고루틴에 의해 처리되는 더 작은 덩어리로 분할했음에도 불구하고 'moving_avg_concurrent2'의 성능이 동시성이 향상되지 않는 이유는 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

Golang은 동시성에서 C보다 낫고 C는 원시 속도에서 Golang보다 낫습니다. 1) Golang은 Goroutine 및 Channel을 통해 효율적인 동시성을 달성하며, 이는 많은 동시 작업을 처리하는 데 적합합니다. 2) C 컴파일러 최적화 및 표준 라이브러리를 통해 하드웨어에 가까운 고성능을 제공하며 극도의 최적화가 필요한 애플리케이션에 적합합니다.

goimpactsdevelopmentpositively throughlyspeed, 효율성 및 단순성.

goisidealforbeginnersandsuitableforcloudandnetworkservicesduetoitssimplicity, 효율성, 및 콘크리 론 피처

Golang은 빠른 개발 및 동시 시나리오에 적합하며 C는 극도의 성능 및 저수준 제어가 필요한 시나리오에 적합합니다. 1) Golang은 쓰레기 수집 및 동시성 메커니즘을 통해 성능을 향상시키고, 고전성 웹 서비스 개발에 적합합니다. 2) C는 수동 메모리 관리 및 컴파일러 최적화를 통해 궁극적 인 성능을 달성하며 임베디드 시스템 개발에 적합합니다.

Golang과 Python은 각각 고유 한 장점이 있습니다. Golang은 고성능 및 동시 프로그래밍에 적합하지만 Python은 데이터 과학 및 웹 개발에 적합합니다. Golang은 동시성 모델과 효율적인 성능으로 유명하며 Python은 간결한 구문 및 풍부한 라이브러리 생태계로 유명합니다.

Golang과 C의 성능 차이는 주로 메모리 관리, 컴파일 최적화 및 런타임 효율에 반영됩니다. 1) Golang의 쓰레기 수집 메커니즘은 편리하지만 성능에 영향을 줄 수 있습니다. 2) C의 수동 메모리 관리 및 컴파일러 최적화는 재귀 컴퓨팅에서 더 효율적입니다.

C는 하드웨어 리소스 및 고성능 최적화가 직접 제어되는 시나리오에 더 적합하지만 Golang은 빠른 개발 및 높은 동시성 처리가 필요한 시나리오에 더 적합합니다. 1.C의 장점은 게임 개발과 같은 고성능 요구에 적합한 하드웨어 특성 및 높은 최적화 기능에 가깝습니다. 2. Golang의 장점은 간결한 구문 및 자연 동시성 지원에 있으며, 이는 동시성 서비스 개발에 적합합니다.
