목차
Pandas 데이터 프레임 녹이기
백엔드 개발 파이썬 튜토리얼 Pandas DataFrame을 효율적으로 녹이고 녹이지 않게 하려면 어떻게 해야 합니까?

Pandas DataFrame을 효율적으로 녹이고 녹이지 않게 하려면 어떻게 해야 합니까?

Dec 20, 2024 am 09:48 AM

How Can I Efficiently Melt and Unmelt Pandas DataFrames?

Pandas 데이터 프레임 녹이기

소개

Pandas에서 데이터 프레임 녹이기에는 데이터를 넓은 형식에서 긴 형식으로 바꾸는 작업이 포함됩니다. 형식으로 되어 있어 다양한 데이터 조작 작업에 유용합니다. 이 문서에서는 데이터프레임을 녹이는 과정을 안내하고 실제 사례를 통해 다양한 시나리오를 탐색합니다.

문제 1: 열 데이터 전치

목표: 원래 열을 반복하면서 열을 행으로 바꿉니다. names.

해결책:

df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')
로그인 후 복사

이 코드는 'Subject' 및 'Grades' 열이 있는 새 데이터 프레임을 생성하며 원래 열 이름은 반복됩니다. 각각에 대해 row.

예:

df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'],
                   'Math': ['A+', 'B', 'A', 'F', 'D', 'C'],
                   'English': ['C', 'B', 'B', 'A+', 'F', 'A'],
                   'Age': [13, 16, 16, 15, 15, 13]})

melted_df = df.melt(id_vars=['Name', 'Age'], var_name='Subject', value_name='Grades')

print(melted_df)
로그인 후 복사

출력:

   Name  Age Subject Grades
0   Bob   13  English     C
1  John   16  English     B
...
11  Tom   13     Math     C
로그인 후 복사

문제 2: 필터링 열

목표: 특정 열을 제외하고 다른 열을 녹입니다.

해결책:

df.melt(id_vars=['Name', 'Age'], value_vars='Math', var_name='Subject', value_name='Grades')
로그인 후 복사

여기서 예를 들어 'Math' 열만 녹이고 'Age'와 'Name'은 그대로 유지됩니다. 식별자.

예:

melted_df = df.melt(id_vars=['Name', 'Age'], value_vars='Math', var_name='Subject', value_name='Grades')

print(melted_df)
로그인 후 복사

출력:

   Name  Age Subject Grades
0   Bob   13    Math    A+
1  John   16    Math     B
...
로그인 후 복사

문제 3: 그룹화 및 녹여서 주문하기 데이터

목표: 녹은 데이터를 그룹화하고 값별로 정렬합니다.

해결책:

melted_df.groupby('value', as_index=False).agg({
    'Subject': ', '.join,
    'Grades': ', '.join
}).sort_values('value', ascending=True)
로그인 후 복사

이 코드는 녹은 데이터를 점수별로 그룹화하고 'Subject' 및 'Grades' 값을 쉼표.

예:

grouped_df = melted_df.groupby('value', as_index=False).agg({
    'Subject': ', '.join,
    'Grades': ', '.join
}).sort_values('value', ascending=True)

print(grouped_df)
로그인 후 복사

출력:

  value             Name                Subjects
0     A         Foo, Tom           Math, English
1    A+         Bob, Bar           Math, English
2     B  John, John, Foo  Math, English, English
...
로그인 후 복사

문제 4: 녹지 않음 데이터프레임

목표: 녹는 과정을 거꾸로 진행하여 원래 형식으로 되돌립니다.

해결책:

melted_df.pivot_table("Grades", ['Name', 'Age'], 'Subject', aggfunc='first').reset_index()
로그인 후 복사

이 코드는 녹은 데이터 프레임을 원래 너비로 되돌립니다. 형식.

예:

unmelted_df = melted_df.pivot_table("Grades", ['Name', 'Age'], 'Subject', aggfunc='first').reset_index()

print(unmelted_df)
로그인 후 복사

출력:

   Name  Age Math English
0   Alex   15    D       F
1   Bar   15    F      A+
2   Bob   13   A+       C
3   Foo   16    A       B
...
로그인 후 복사

문제 5: 그룹화 및 결합 열

목표: 특정 열을 기준으로 데이터를 그룹화하고 다른 열을 쉼표로 결합합니다.

해결책:

melted_df.groupby('Name', as_index=False).agg(
    Subjects=', '.join,
    Grades=', '.join
)
로그인 후 복사

이 코드는 '이름'별로 데이터를 그룹화하고 '과목'과 '성적'을 결합합니다.

예:

grouped_df = melted_df.groupby('Name', as_index=False).agg(
    Subjects=', '.join,
    Grades=', '.join
)

print(grouped_df)
로그인 후 복사

출력:

   Name        Subjects Grades
0  Alex  Math, English   D, F
1   Bar  Math, English  F, A+
2   Bob  Math, English  A+, C
...
로그인 후 복사

문제 6: 녹는다 모두 열

목표: 식별자를 포함하여 모든 열을 행으로 변환합니다.

해결책:

df.melt(var_name='Column', value_name='Value')
로그인 후 복사

이 코드는 모든 열을 행으로 녹여 모든 데이터를 다음과 같이 처리합니다. 값.

예:

melted_df = df.melt(var_name='Column', value_name='Value')

print(melted_df)
로그인 후 복사

출력:

    Column Value
0       Age    16
1       Age    16
2       Age    15
...
11  English     C
12     Math     A
13     Math    A+
로그인 후 복사

위 내용은 Pandas DataFrame을 효율적으로 녹이고 녹이지 않게 하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

파이썬 : 게임, Guis 등 파이썬 : 게임, Guis 등 Apr 13, 2025 am 12:14 AM

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

See all articles