대용량 파일 다운로드 스트리밍을 위해 Python의 요청 라이브러리를 어떻게 최적화할 수 있습니까?
요청을 사용하여 Python에서 스트림 최적화 파일 다운로드
유명 HTTP 라이브러리인 Requests는 사용 가능한 메모리를 초과하는 대용량 파일 다운로드를 처리하는 데 어려움을 겪고 있습니다. 이러한 제한을 극복하려면 파일 청크를 수신하면서 읽고 쓰는 스트리밍 접근 방식을 구현하는 것이 중요합니다.
제공된 코드 조각에서 볼 수 있듯이 기존 접근 방식은 이 점에서 부족합니다. 응답 콘텐츠를 청크로 반복하는 r.iter_content()를 활용함에도 불구하고 응답은 여전히 메모리에 캐시됩니다.
이 문제를 해결하려면 코드에 스트리밍 기능을 도입하는 것이 좋습니다. 주요 수정 사항은 스트림 매개변수가 True로 설정된 request.get()의 구현에 있습니다. 이를 통해 라이브러리는 응답 콘텐츠를 메모리에 저장하지 않고 검색할 수 있습니다.
def download_file(url): local_filename = url.split('/')[-1] with requests.get(url, stream=True) as r: r.raise_for_status() with open(local_filename, 'wb') as f: for chunk in r.iter_content(chunk_size=8192): f.write(chunk) return local_filename
이러한 최적화를 통해 Python의 메모리 소비는 다운로드되는 파일 크기에 관계없이 제한된 상태로 유지됩니다. 지정된 청크 크기와 함께 iter_content를 사용하면 데이터가 관리 가능한 부분으로 파일에 기록되어 메모리 고갈을 방지할 수 있습니다.
각 청크에 반환된 바이트 수가 지정된 청크 크기와 정확하게 일치하지 않을 수 있다는 점에 유의하세요. . 검색된 청크 크기는 다양하고 지정된 크기보다 훨씬 더 큰 것이 일반적입니다. 이 동작에 대한 자세한 내용은 iter_content 및 본문 콘텐츠 워크플로 공식 문서를 참조하세요.
위 내용은 대용량 파일 다운로드 스트리밍을 위해 Python의 요청 라이브러리를 어떻게 최적화할 수 있습니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 초보자부터 고급 개발자에 이르기까지 모든 요구에 적합한 단순성과 힘에 호의적입니다. 다목적 성은 다음과 같이 반영됩니다. 1) 배우고 사용하기 쉽고 간단한 구문; 2) Numpy, Pandas 등과 같은 풍부한 라이브러리 및 프레임 워크; 3) 다양한 운영 체제에서 실행할 수있는 크로스 플랫폼 지원; 4) 작업 효율성을 향상시키기위한 스크립팅 및 자동화 작업에 적합합니다.
