두 DataFrame을 비교할 때 Pandas DataFrame의 고유 행을 효율적으로 식별하는 방법은 무엇입니까?
Pandas DataFrames에서 고유 행 얻기
두 개의 Pandas 데이터 프레임이 주어지면 그 중 하나만 존재하는 행을 식별해야 하는 경우가 많습니다. 이는 병합 작업을 활용하여 효과적으로 달성할 수 있습니다.
예를 들어 다음 데이터프레임을 고려하세요.
df1 = pd.DataFrame(data={'col1': [1, 2, 3, 4, 5, 3], 'col2': [10, 11, 12, 13, 14, 10]}) df2 = pd.DataFrame(data={'col1': [1, 2, 3], 'col2': [10, 11, 12]})
df2에 없는 df1의 행을 얻으려면 다음을 수행할 수 있습니다. df1과 df2 사이의 왼쪽 조인. df1의 각 행이 df2의 정확히 하나의 행과 일치하는지 확인하려면 먼저 df2에서 중복 행을 제거해야 합니다. drop_duplicates() 함수를 사용하여 이 작업을 수행할 수 있습니다.
df_all = df1.merge(df2.drop_duplicates(), on=['col1', 'col2'], how='left', indicator=True)
결과 df_all 데이터 프레임에는 각 행이 df1 및 df2 둘 다('둘 다')에서 왔는지 여부를 나타내는 _merge라는 추가 열이 있습니다. df1 전용('left_only') 또는 df2에서만 ('right_only').
col1 col2 _merge 0 1 10 both 1 2 11 both 2 3 12 both 3 4 13 left_only 4 5 14 left_only 5 3 10 left_only
df2에 없는 행을 df1에서 추출하려면 _merge가 'left_only'와 동일한 행을 선택하면 됩니다.
rows_not_in_df2 = df_all[df_all['_merge'] == 'left_only']
col1 col2 0 4 13 1 5 14 2 3 10
오답 피하기 접근법
행을 전체적으로 고려하지 못하는 잘못된 솔루션을 피하는 것이 중요합니다. 일부 솔루션은 행의 각 개별 값이 다른 데이터프레임에 있는지만 확인하므로 잘못된 결과가 발생할 수 있습니다.
예를 들어, 데이터 [3, 10]이 포함된 다른 행을 df1에 추가했다면 가 df2에도 존재하는 경우 잘못된 접근 방식은 두 열의 값이 다르기 때문에 df2에 존재하지 않는 것으로 식별합니다. 그러나 우리의 접근 방식은 두 열에 대해 동일한 값을 가진 df2에 이미 있기 때문에 존재하지 않는 것으로 올바르게 식별합니다.
위 내용은 두 DataFrame을 비교할 때 Pandas DataFrame의 고유 행을 효율적으로 식별하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Linux 터미널에서 Python 버전을 보려고 할 때 Linux 터미널에서 Python 버전을 볼 때 권한 문제에 대한 솔루션 ... Python을 입력하십시오 ...

Fiddlerevery Where를 사용할 때 Man-in-the-Middle Reading에 Fiddlereverywhere를 사용할 때 감지되는 방법 ...

Python의 Pandas 라이브러리를 사용할 때는 구조가 다른 두 데이터 프레임 사이에서 전체 열을 복사하는 방법이 일반적인 문제입니다. 두 개의 dats가 있다고 가정 해

Uvicorn은 HTTP 요청을 어떻게 지속적으로 듣습니까? Uvicorn은 ASGI를 기반으로 한 가벼운 웹 서버입니다. 핵심 기능 중 하나는 HTTP 요청을 듣고 진행하는 것입니다 ...

10 시간 이내에 컴퓨터 초보자 프로그래밍 기본 사항을 가르치는 방법은 무엇입니까? 컴퓨터 초보자에게 프로그래밍 지식을 가르치는 데 10 시간 밖에 걸리지 않는다면 무엇을 가르치기로 선택 하시겠습니까?

Linux 터미널에서 Python 사용 ...

Investing.com의 크롤링 전략 이해 많은 사람들이 종종 Investing.com (https://cn.investing.com/news/latest-news)에서 뉴스 데이터를 크롤링하려고합니다.
