JavaScript 인터뷰 치트 시트 - 2부
일반적인 LeetCode 패턴
// Two Pointers - In-place array modification const modifyArray = (arr) => { let writePointer = 0; for (let readPointer = 0; readPointer < arr.length; readPointer++) { if (/* condition */) { [arr[writePointer], arr[readPointer]] = [arr[readPointer], arr[writePointer]]; writePointer++; } } return writePointer; // Often returns new length or modified position }; // Fast and Slow Pointers (Floyd's Cycle Detection) const hasCycle = (head) => { let slow = head, fast = head; while (fast && fast.next) { slow = slow.next; fast = fast.next.next; if (slow === fast) return true; } return false; }; // Sliding Window - Fixed Size const fixedSlidingWindow = (arr, k) => { let sum = 0; // Initialize first window for (let i = 0; i < k; i++) { sum += arr[i]; } let maxSum = sum; // Slide window for (let i = k; i < arr.length; i++) { sum = sum - arr[i - k] + arr[i]; maxSum = Math.max(maxSum, sum); } return maxSum; }; // Sliding Window - Variable Size const varSlidingWindow = (arr, target) => { let start = 0, sum = 0, minLen = Infinity; for (let end = 0; end < arr.length; end++) { sum += arr[end]; while (sum >= target) { minLen = Math.min(minLen, end - start + 1); sum -= arr[start]; start++; } } return minLen === Infinity ? 0 : minLen; }; // BFS - Level Order Traversal const levelOrder = (root) => { if (!root) return []; const result = []; const queue = [root]; while (queue.length) { const levelSize = queue.length; const currentLevel = []; for (let i = 0; i < levelSize; i++) { const node = queue.shift(); currentLevel.push(node.val); if (node.left) queue.push(node.left); if (node.right) queue.push(node.right); } result.push(currentLevel); } return result; }; // DFS - Recursive Template const dfs = (root) => { const result = []; const traverse = (node) => { if (!node) return; // Pre-order result.push(node.val); traverse(node.left); // In-order would be here traverse(node.right); // Post-order would be here }; traverse(root); return result; }; // Backtracking Template const backtrack = (nums) => { const result = []; const bt = (path, choices) => { if (/* ending condition */) { result.push([...path]); return; } for (let i = 0; i < choices.length; i++) { // Make choice path.push(choices[i]); // Recurse bt(path, /* remaining choices */); // Undo choice path.pop(); } }; bt([], nums); return result; }; // Dynamic Programming - Bottom Up Template const dpBottomUp = (n) => { const dp = new Array(n + 1).fill(0); dp[0] = 1; // Base case for (let i = 1; i <= n; i++) { for (let j = 0; j < i; j++) { dp[i] += dp[j] * /* some calculation */; } } return dp[n]; }; // Dynamic Programming - Top Down Template const dpTopDown = (n) => { const memo = new Map(); const dp = (n) => { if (n <= 1) return 1; if (memo.has(n)) return memo.get(n); let result = 0; for (let i = 0; i < n; i++) { result += dp(i) * /* some calculation */; } memo.set(n, result); return result; }; return dp(n); }; // Monotonic Stack Template const monotonicStack = (arr) => { const stack = []; // [index, value] const result = new Array(arr.length).fill(-1); for (let i = 0; i < arr.length; i++) { while (stack.length && stack[stack.length - 1][1] > arr[i]) { const [prevIndex, _] = stack.pop(); result[prevIndex] = i - prevIndex; } stack.push([i, arr[i]]); } return result; }; // Prefix Sum const prefixSum = (arr) => { const prefix = [0]; for (let i = 0; i < arr.length; i++) { prefix.push(prefix[prefix.length - 1] + arr[i]); } // Sum of range [i, j] = prefix[j + 1] - prefix[i] return prefix; }; // Binary Search Variations const binarySearchLeftmost = (arr, target) => { let left = 0, right = arr.length; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] < target) left = mid + 1; else right = mid; } return left; }; const binarySearchRightmost = (arr, target) => { let left = 0, right = arr.length; while (left < right) { const mid = Math.floor((left + right) / 2); if (arr[mid] <= target) left = mid + 1; else right = mid; } return left - 1; }; // Trie Operations class TrieNode { constructor() { this.children = new Map(); this.isEndOfWord = false; } } class Trie { constructor() { this.root = new TrieNode(); } insert(word) { let node = this.root; for (const char of word) { if (!node.children.has(char)) { node.children.set(char, new TrieNode()); } node = node.children.get(char); } node.isEndOfWord = true; } search(word) { let node = this.root; for (const char of word) { if (!node.children.has(char)) return false; node = node.children.get(char); } return node.isEndOfWord; } startsWith(prefix) { let node = this.root; for (const char of prefix) { if (!node.children.has(char)) return false; node = node.children.get(char); } return true; } } // Union Find (Disjoint Set) class UnionFind { constructor(n) { this.parent = Array.from({length: n}, (_, i) => i); this.rank = new Array(n).fill(0); } find(x) { if (this.parent[x] !== x) { this.parent[x] = this.find(this.parent[x]); // Path compression } return this.parent[x]; } union(x, y) { let rootX = this.find(x); let rootY = this.find(y); if (rootX !== rootY) { if (this.rank[rootX] < this.rank[rootY]) { [rootX, rootY] = [rootY, rootX]; } this.parent[rootY] = rootX; if (this.rank[rootX] === this.rank[rootY]) { this.rank[rootX]++; } } } }
일반적인 시간/공간 복잡성 패턴
// O(1) - Constant Array.push(), Array.pop(), Map.set(), Map.get() // O(log n) - Logarithmic Binary Search, Balanced BST operations // O(n) - Linear Array traversal, Linear Search // O(n log n) - Linearithmic Efficient sorting (Array.sort()) // O(n²) - Quadratic Nested loops, Simple sorting algorithms // O(2ⁿ) - Exponential Recursive solutions without memoization
위 내용은 JavaScript 인터뷰 치트 시트 - 2부의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

각각의 엔진의 구현 원리 및 최적화 전략이 다르기 때문에 JavaScript 엔진은 JavaScript 코드를 구문 분석하고 실행할 때 다른 영향을 미칩니다. 1. 어휘 분석 : 소스 코드를 어휘 단위로 변환합니다. 2. 문법 분석 : 추상 구문 트리를 생성합니다. 3. 최적화 및 컴파일 : JIT 컴파일러를 통해 기계 코드를 생성합니다. 4. 실행 : 기계 코드를 실행하십시오. V8 엔진은 즉각적인 컴파일 및 숨겨진 클래스를 통해 최적화하여 Spidermonkey는 유형 추론 시스템을 사용하여 동일한 코드에서 성능이 다른 성능을 제공합니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

C/C에서 JavaScript로 전환하려면 동적 타이핑, 쓰레기 수집 및 비동기 프로그래밍으로 적응해야합니다. 1) C/C는 수동 메모리 관리가 필요한 정적으로 입력 한 언어이며 JavaScript는 동적으로 입력하고 쓰레기 수집이 자동으로 처리됩니다. 2) C/C를 기계 코드로 컴파일 해야하는 반면 JavaScript는 해석 된 언어입니다. 3) JavaScript는 폐쇄, 프로토 타입 체인 및 약속과 같은 개념을 소개하여 유연성과 비동기 프로그래밍 기능을 향상시킵니다.

웹 개발에서 JavaScript의 주요 용도에는 클라이언트 상호 작용, 양식 검증 및 비동기 통신이 포함됩니다. 1) DOM 운영을 통한 동적 컨텐츠 업데이트 및 사용자 상호 작용; 2) 사용자가 사용자 경험을 향상시키기 위해 데이터를 제출하기 전에 클라이언트 확인이 수행됩니다. 3) 서버와의 진실한 통신은 Ajax 기술을 통해 달성됩니다.

실제 세계에서 JavaScript의 응용 프로그램에는 프론트 엔드 및 백엔드 개발이 포함됩니다. 1) DOM 운영 및 이벤트 처리와 관련된 TODO 목록 응용 프로그램을 구축하여 프론트 엔드 애플리케이션을 표시합니다. 2) Node.js를 통해 RESTFULAPI를 구축하고 Express를 통해 백엔드 응용 프로그램을 시연하십시오.

보다 효율적인 코드를 작성하고 성능 병목 현상 및 최적화 전략을 이해하는 데 도움이되기 때문에 JavaScript 엔진이 내부적으로 작동하는 방식을 이해하는 것은 개발자에게 중요합니다. 1) 엔진의 워크 플로에는 구문 분석, 컴파일 및 실행; 2) 실행 프로세스 중에 엔진은 인라인 캐시 및 숨겨진 클래스와 같은 동적 최적화를 수행합니다. 3) 모범 사례에는 글로벌 변수를 피하고 루프 최적화, Const 및 Lets 사용 및 과도한 폐쇄 사용을 피하는 것이 포함됩니다.

Python과 JavaScript는 커뮤니티, 라이브러리 및 리소스 측면에서 고유 한 장점과 단점이 있습니다. 1) Python 커뮤니티는 친절하고 초보자에게 적합하지만 프론트 엔드 개발 리소스는 JavaScript만큼 풍부하지 않습니다. 2) Python은 데이터 과학 및 기계 학습 라이브러리에서 강력하며 JavaScript는 프론트 엔드 개발 라이브러리 및 프레임 워크에서 더 좋습니다. 3) 둘 다 풍부한 학습 리소스를 가지고 있지만 Python은 공식 문서로 시작하는 데 적합하지만 JavaScript는 MDNWebDocs에서 더 좋습니다. 선택은 프로젝트 요구와 개인적인 이익을 기반으로해야합니다.

개발 환경에서 Python과 JavaScript의 선택이 모두 중요합니다. 1) Python의 개발 환경에는 Pycharm, Jupyternotebook 및 Anaconda가 포함되어 있으며 데이터 과학 및 빠른 프로토 타이핑에 적합합니다. 2) JavaScript의 개발 환경에는 Node.js, VScode 및 Webpack이 포함되어 있으며 프론트 엔드 및 백엔드 개발에 적합합니다. 프로젝트 요구에 따라 올바른 도구를 선택하면 개발 효율성과 프로젝트 성공률이 향상 될 수 있습니다.
