백엔드 개발 파이썬 튜토리얼 고객 이탈을 예측하기 위한 의사결정 트리 분류기 예

고객 이탈을 예측하기 위한 의사결정 트리 분류기 예

Dec 10, 2024 pm 01:30 PM

Decision Tree Classifier Example to Predict Customer Churn

고객 이탈을 예측하기 위한 의사결정 트리 분류기 예

개요

이 프로젝트에서는 의사결정 트리 분류기를 사용하여 고객 이탈(고객이 서비스를 떠나는지 여부)을 예측하는 방법을 보여줍니다. 데이터 세트에는 연령, 월 요금, 고객 서비스 통화 등의 기능이 포함되어 있으며 고객 이탈 여부를 예측하는 것이 목표입니다.

모델은 Scikit-learn의 결정 트리 분류기를 사용하여 훈련되며, 코드는 모델이 결정을 내리는 방식을 더 잘 이해하기 위해 결정 트리를 시각화합니다.


사용된 기술

  • Python 3.x: 모델 구축에 사용되는 기본 언어
  • Pandas: 데이터 조작 및 데이터세트 처리용.
  • Matplotlib: 데이터 시각화용(결정 트리 플로팅).
  • Scikit-learn: 모델 훈련 및 평가를 포함한 기계 학습에 사용됩니다.

설명된 단계

1. 필요한 라이브러리 가져오기

import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
로그인 후 복사
로그인 후 복사
로그인 후 복사
로그인 후 복사
  • 판다(pd):

    • 데이터 조작 및 데이터를 DataFrame 형식으로 로드하는 데 사용됩니다. DataFrame을 사용하면 테이블(행 및 열)과 같은 구조화된 데이터를 구성하고 조작할 수 있습니다.
  • Matplotlib(plt):

    • 데이터를 시각화하는 데 사용되는 플로팅 라이브러리입니다. 여기서는 의사결정 트리를 그래픽으로 그리는 데 사용되며, 이는 트리의 각 노드에서 의사결정이 이루어지는 방식을 이해하는 데 도움이 됩니다.
  • 경고(경고):

    • 경고 모듈은 경고를 억제하거나 처리하는 데 사용됩니다. 이 코드에서는 출력을 깔끔하고 읽기 쉽게 유지하기 위해 불필요한 경고를 무시합니다.
  • Scikit-learn 라이브러리:

    • train_test_split: 이 함수는 데이터세트를 훈련 및 테스트 하위 집합으로 분할합니다. 학습 데이터는 모델을 피팅하는 데 사용되고, 테스트 데이터는 성능을 평가하는 데 사용됩니다.
    • DecisionTreeClassifier: 데이터를 분류하고 고객 이탈을 예측하는 데 사용되는 모델입니다. 의사결정 트리는 기능을 기반으로 트리와 같은 의사결정 모델을 생성하여 작동합니다.
    • accuracy_score: 예측값과 타겟 변수(Churn)의 실제값을 비교하여 모델의 정확도를 계산하는 함수입니다.
    • tree: 이 모듈에는 학습된 의사결정 트리를 시각화하는 기능이 포함되어 있습니다.

2. 경고 억제

import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
로그인 후 복사
로그인 후 복사
로그인 후 복사
로그인 후 복사
  • 이 줄은 Python에게 모든 경고를 무시하라고 지시합니다. 모델을 실행 중이고 경고(예: 더 이상 사용되지 않는 기능에 대한 경고)로 인해 출력이 복잡해지는 것을 원하지 않을 때 도움이 될 수 있습니다.

3. 합성 데이터세트 생성

warnings.filterwarnings("ignore")
로그인 후 복사
로그인 후 복사
  • 여기서 프로젝트를 위한 합성 데이터세트를 생성합니다. 이 데이터 세트는 Age, MonthlyCharge, CustomerServiceCalls 및 대상 변수 Churn(고객 이탈 여부)과 같은 기능을 사용하여 통신 회사에 대한 고객 정보를 시뮬레이션합니다.

    • CustomerID: 각 고객의 고유 식별자입니다.
    • 연령: 고객의 나이
    • 월간 요금: 고객의 월별 청구서입니다.
    • CustomerServiceCalls: 고객이 고객 서비스에 전화한 횟수
    • Churn: 고객의 이탈 여부(예/아니요).
  • Pandas DataFrame: 데이터는 2차원 레이블이 지정된 데이터 구조인 DataFrame(df)으로 구성되어 있어 데이터를 쉽게 조작하고 분석할 수 있습니다.

4. 데이터를 특성과 대상 변수로 분할

import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
로그인 후 복사
로그인 후 복사
로그인 후 복사
로그인 후 복사
  • 특징(X): 타겟을 예측하는 데 사용되는 독립변수입니다. 이 경우에는 Age, MonthlyCharge 및 CustomerServiceCalls가 포함됩니다.
  • 타겟 변수(y): 예측하려는 값인 종속 변수입니다. 여기서는 고객의 이탈 여부를 나타내는 Churn 컬럼입니다.

5. 데이터를 학습 세트와 테스트 세트로 분할

warnings.filterwarnings("ignore")
로그인 후 복사
로그인 후 복사
  • train_test_split은 데이터 세트를 훈련 세트(모델 훈련에 사용)와 테스트 세트(모델 평가에 사용)의 두 부분으로 나눕니다.
    • test_size=0.3: 데이터의 30%는 테스트용으로 남겨두고 나머지 70%는 학습용으로 사용됩니다.
    • random_state=42 난수 생성기의 시드를 수정하여 결과의 ​​재현성을 보장합니다.

6. 의사결정나무 모델 훈련

data = {
    'CustomerID': range(1, 101),  # Unique ID for each customer
    'Age': [20, 25, 30, 35, 40, 45, 50, 55, 60, 65]*10,  # Age of customers
    'MonthlyCharge': [50, 60, 70, 80, 90, 100, 110, 120, 130, 140]*10,  # Monthly bill amount
    'CustomerServiceCalls': [1, 2, 3, 4, 0, 1, 2, 3, 4, 0]*10,  # Number of customer service calls
    'Churn': ['No', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'No', 'Yes']*10  # Churn status
}

df = pd.DataFrame(data)
print(df.head())
로그인 후 복사
  • DecisionTreeClassifier()는 의사결정 트리 모델을 초기화합니다.
  • clf.fit(X_train, y_train)은 훈련 데이터를 사용하여 모델을 훈련합니다. 모델은 X_train 특성으로부터 패턴을 학습하여 y_train 목표 변수를 예측합니다.

7. 예측하기

X = df[['Age', 'MonthlyCharge', 'CustomerServiceCalls']]  # Features
y = df['Churn']  # Target Variable
로그인 후 복사
  • clf.predict(X_test): 모델이 훈련된 후 테스트 세트(X_test)에 대한 예측을 수행하는 데 사용됩니다. 이러한 예측값은 y_pred에 저장되며, 이를 실제값(y_test)과 비교하여 모델을 평가하게 됩니다.

8. 모델 평가

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
로그인 후 복사
  • accuracy_score(y_test, y_pred)는 예측된 이탈 라벨(y_pred)을 테스트 세트의 실제 이탈 라벨(y_test)과 비교하여 모델의 정확도를 계산합니다.
  • 정확도는 얼마나 많은 예측이 맞았는지를 나타내는 척도입니다. 평가를 위해 인쇄됩니다.

9. 의사결정나무 시각화

clf = DecisionTreeClassifier()
clf.fit(X_train, y_train)
로그인 후 복사
  • tree.plot_tree(clf,filled=True): 훈련된 의사결정 트리 모델을 시각화합니다. filled=True 인수는 클래스 라벨(Churn/No Churn)을 기준으로 노드 색상을 지정합니다.
  • feature_names: 트리에 표시할 기능(독립변수)의 이름을 지정합니다.
  • class_names: 대상 변수(Churn)에 대한 클래스 레이블을 지정합니다.
  • plt.show(): 트리 시각화를 표시합니다.

코드 실행

  1. 저장소를 복제하거나 스크립트를 다운로드하세요.
  2. 종속성 설치:
import pandas as pd
import matplotlib.pyplot as plt
import warnings
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
from sklearn import tree
로그인 후 복사
로그인 후 복사
로그인 후 복사
로그인 후 복사
  1. Python 스크립트 또는 Jupyter 노트북을 실행하여 모델을 훈련하고 의사결정 트리를 시각화하세요.

위 내용은 고객 이탈을 예측하기 위한 의사결정 트리 분류기 예의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

파이썬과 시간 : 공부 시간을 최대한 활용 파이썬과 시간 : 공부 시간을 최대한 활용 Apr 14, 2025 am 12:02 AM

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles