Pandas DataFrame을 행별로 채우는 것이 왜 비효율적이며 더 나은 접근 방식은 무엇입니까?
빈 Pandas DataFrame 생성 및 채우기
개념적으로는 빈 DataFrame을 생성하여 시작한 다음 점진적으로 값으로 채우는 것이 좋습니다. . 그러나 이 접근 방식은 비효율적이며 성능 문제를 일으키기 쉽습니다.
행 단위로 DataFrame을 확장할 때의 함정
빈 DataFrame에 행을 반복적으로 추가하는 것은 계산 비용이 많이 듭니다. . 동적 메모리 할당 및 재할당이 필요하기 때문에 2차 복잡도 작업이 발생합니다. 이는 특히 대규모 데이터 세트를 처리할 때 성능에 심각한 영향을 미칠 수 있습니다.
대체 접근 방식: 목록에 데이터 누적
DataFrame을 행 단위로 늘리는 대신 목록에 데이터를 축적하는 것이 좋습니다. 여기에는 여러 가지 장점이 있습니다.
- 더 효율적이고 훨씬 빠릅니다.
- 목록은 DataFrame에 비해 메모리 공간이 더 작습니다.
- 데이터 유형이 자동으로 추론됩니다. 수동 조정이 필요하지 않습니다.
- 목록은 메모리를 변경하지 않고 추가 작업을 지원합니다. 할당.
목록에서 DataFrame 생성
목록에 데이터가 쌓이면 pd를 사용하여 목록을 변환하면 DataFrame을 쉽게 생성할 수 있습니다. .데이터프레임(). 이렇게 하면 적절한 데이터 유형 추론이 보장되고 DataFrame에 대한 RangeIndex 설정이 자동화됩니다.
예
질문에 설명된 시나리오를 고려해보세요. 다음 코드는 목록에 데이터를 축적한 다음 DataFrame을 생성하는 방법을 보여줍니다.
import pandas as pd data = [] dates = [pd.to_datetime(f"2023-08-{day}") for day in range(10, 0, -1)] valdict = {'A': [], 'B': [], 'C': []} # Initialize symbol value lists for date in dates: for symbol in valdict: if date == dates[0]: valdict[symbol].append(0) else: valdict[symbol].append(1 + valdict[symbol][-1]) # Create a DataFrame from the accumulated data df = pd.DataFrame(valdict, index=dates)
이 접근 방식을 사용하면 성능 오버헤드나 개체 열에 대한 우려 없이 효율적인 데이터 축적과 원활한 DataFrame 생성이 보장됩니다.
위 내용은 Pandas DataFrame을 행별로 채우는 것이 왜 비효율적이며 더 나은 접근 방식은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
