Excel을 사용하여 LlamaChat으로 간단한 챗봇 구축]
이번 게시물에서는 Llama2 모델을 사용하여 Excel 데이터를 지능적으로 쿼리하는 챗봇을 구축한 방법을 설명하겠습니다.
우리가 만들고 있는 것
- 엑셀 파일을 불러옵니다.
- 데이터를 관리 가능한 단위로 나눕니다.
- 빠른 검색을 위해 데이터를 벡터 데이터베이스에 저장합니다.
- 로컬 Llama2 모델을 사용하여 다음을 기반으로 질문에 답하세요. 엑셀 파일의 내용입니다.
전제 조건:
파이썬(≥ 3.8)
라이브러리: langchain, pandas, unstructured, Chroma
1단계: 종속성 설치
%pip install -q unstructured langchain %pip install -q "unstructured[all-docs]"
2단계: Excel 파일 로드
import pandas as pd excel_path = "Book2.xlsx" if excel_path: df = pd.read_excel(excel_path) data = df.to_string(index=False) else: print("Upload an Excel file")
3단계: 데이터를 청크하여 벡터 데이터베이스에 저장
대용량 텍스트 데이터는 효과적인 삽입 및 쿼리를 위해 더 작고 겹치는 덩어리로 분할됩니다. 이러한 청크는 Chroma 벡터 데이터베이스에 저장됩니다.
from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.embeddings import OllamaEmbeddings from langchain_community.vectorstores import Chroma text_splitter = RecursiveCharacterTextSplitter(chunk_size=7500, chunk_overlap=100) chunks = text_splitter.split_text(data) embedding_model = OllamaEmbeddings(model="nomic-embed-text", show_progress=False) vector_db = Chroma.from_texts( texts=chunks, embedding=embedding_model, collection_name="local-rag" )
4단계: Llama2 모델 초기화
ChatOllama를 사용하여 Llama2 모델을 로컬로 로드합니다.
from langchain_community.chat_models import ChatOllama local_model = "llama2" llm = ChatOllama(model=local_model)
5단계: 쿼리 프롬프트 생성
챗봇은 Excel 파일의 특정 열 이름을 기반으로 응답합니다. 모델을 안내하는 프롬프트 템플릿을 만듭니다
from langchain.prompts import PromptTemplate QUERY_PROMPT = PromptTemplate( input_variables=["question"], template="""You are an AI assistant. Answer the user's questions based on the column names: Id, order_id, name, sales, refund, and status. Original question: {question}""" )
6단계: 검색기 설정
Llama2 모델이 질문에 답하는 데 사용할 벡터 데이터베이스에서 관련 청크를 가져오도록 검색기를 구성합니다.
from langchain.retrievers.multi_query import MultiQueryRetriever retriever = MultiQueryRetriever.from_llm( vector_db.as_retriever(), llm, prompt=QUERY_PROMPT )
7단계: 대응 체인 구축
응답 체인은 다음을 통합합니다.
- 컨텍스트를 가져오는 검색기
- 질문과 맥락의 형식을 지정하는 프롬프트
- 답변을 생성하는 Llama2 모델.
- 응답 형식을 지정하는 출력 파서.
from langchain.prompts import ChatPromptTemplate from langchain_core.runnables import RunnablePassthrough from langchain_core.output_parsers import StrOutputParser template = """Answer the question based ONLY on the following context: {context} Question: {question} """ prompt = ChatPromptTemplate.from_template(template) chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | llm | StrOutputParser() )
8단계: 질문하기
이제 질문할 준비가 되었습니다! 응답을 얻기 위해 체인을 호출하는 방법은 다음과 같습니다.
raw_result = chain.invoke("How many rows are there?") final_result = f"{raw_result}\n\nIf you have more questions, feel free to ask!" print(final_result)
샘플 출력
샘플 Excel 파일에서 위 코드를 실행했을 때 얻은 결과는 다음과 같습니다.
Based on the provided context, there are 10 rows in the table. If you have more questions, feel free to ask!
결론:
이 접근 방식은 임베딩과 Llama2 모델의 강력한 기능을 활용하여 Excel 데이터용 스마트 대화형 챗봇을 만듭니다. 약간의 조정을 통해 이를 확장하여 다른 유형의 문서와 함께 작동하거나 완전한 앱에 통합할 수 있습니다!
내 LinkedIn에서 UI 작업 예제를 확인하세요.
BChat Excel 소개: Excel 파일 상호 작용을 위한 대화형 AI 기반 도구
위 내용은 Excel을 사용하여 LlamaChat으로 간단한 챗봇 구축]의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.
