FastAPI 백엔드에 대용량 파일(3GB 이상)을 효율적으로 업로드하는 방법은 무엇입니까?
FastAPI 백엔드에 대용량 파일(≥3GB)을 업로드하는 방법은 무엇입니까?
Requests-Toolbelt 사용
requests-toolbelt 라이브러리를 사용할 때, upload_file에 대한 필드를 선언할 때 파일 이름과 Content-Type 헤더를 모두 지정해야 합니다. 예는 다음과 같습니다.
filename = 'my_file.txt' m = MultipartEncoder(fields={'upload_file': (filename, open(filename, 'rb'))}) r = requests.post( url, data=m, headers={'Content-Type': m.content_type}, verify=False, ) print(r.request.headers) # confirm that the 'Content-Type' header has been set.
Python 요청/HTTPX 사용
또 다른 옵션은 스트리밍 파일 업로드를 효율적으로 처리할 수 있는 Python의 요청 또는 HTTPX 라이브러리를 사용하는 것입니다. 각각에 대한 예는 다음과 같습니다.
요청 사용:
import requests url = '...' filename = '...' with open(filename, 'rb') as file: r = requests.post( url, files={'upload_file': file}, headers={'Content-Type': 'multipart/form-data'}, )
HTTPX 사용:
import httpx url = '...' filename = '...' with open(filename, 'rb') as file: r = httpx.post( url, files={'upload_file': file}, )
HTTPX 자동 스트리밍 파일 업로드를 지원하는 반면, 요청에서는 Content-Type 헤더를 다음으로 설정해야 합니다. 'multipart/form-data'.
FastAPI Stream() 메서드 사용
FastAPI의 .stream() 메서드를 사용하면 요청 본문을 스트림으로 액세스하여 대용량 파일을 메모리에 로드하는 것을 방지할 수 있습니다. . 이 접근 방식을 사용하려면 다음 단계를 따르세요.
- 스트리밍 양식 데이터 라이브러리를 설치합니다. 이 라이브러리는 멀티파트/양식 데이터 데이터에 대한 스트리밍 파서를 제공합니다.
- FastAPI 엔드포인트 생성: .stream() 메서드를 사용하여 요청 본문을 스트림으로 구문 분석하고 스트림을 활용합니다. multipart/form-data 구문 분석을 처리하기 위한 ing_form_data 라이브러리.
- 대상 등록: FileTarget 및 ValueTarget 개체를 정의하여 각각 파일 및 양식 데이터 구문 분석을 처리합니다.
업로드된 파일 크기 검증
업로드된 파일 크기가 다음을 초과하지 않는지 확인하려면 지정된 제한이 있는 경우 MaxSizeValidator를 사용할 수 있습니다. 예는 다음과 같습니다.
from streaming_form_data import streaming_form_data from streaming_form_data import MaxSizeValidator FILE_SIZE_LIMIT = 1024 * 1024 * 1024 # 1 GB def validate_file_size(chunk: bytes): if FILE_SIZE_LIMIT > 0: streaming_form_data.validators.MaxSizeValidator( FILE_SIZE_LIMIT). __call__(chunk)
엔드포인트 구현
다음은 이러한 기술을 통합하는 엔드포인트 예입니다.
from fastapi import FastAPI, File, Request from fastapi.responses import HTMLResponse from streaming_form_data.targets import FileTarget, ValueTarget from streaming_form_data import StreamingFormDataParser app = FastAPI() @app.post('/upload') async def upload(request: Request): # Parse the HTTP headers to retrieve the boundary string. parser = StreamingFormDataParser(headers=request.headers) # Register FileTarget and ValueTarget objects. file_ = FileTarget() data = ValueTarget() parser.register('upload_file', file_) parser.register('data', data) async for chunk in request.stream(): parser.data_received(chunk) # Validate file size (if necessary) validate_file_size(file_.content) # Process the uploaded file and data. return {'message': 'File uploaded successfully!'}
위 내용은 FastAPI 백엔드에 대용량 파일(3GB 이상)을 효율적으로 업로드하는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.
