동적 웹 페이지를 효율적으로 스크랩하기 위해 Selenium을 Scrapy와 통합하려면 어떻게 해야 합니까?
동적 페이지 스크래핑을 위해 Selenium을 Scrapy와 통합
Scrapy를 사용하여 동적 웹페이지에서 데이터를 스크래핑하려고 하면 표준 크롤링 프로세스가 부족할 수 있습니다. . URL을 수정하지 않는 "다음" 버튼을 클릭하는 등 페이지 매김이 비동기 로딩에 의존하는 경우가 종종 있습니다. 이 문제를 극복하려면 Scrapy 스파이더에 셀레늄을 통합하는 것이 효과적인 솔루션이 될 수 있습니다.
스파이더에 셀레늄 배치
Scrapy 스파이더 내에 셀레늄을 최적으로 배치하는 방법은 다음과 같습니다. 특정 긁기 요구 사항에 대해. 그러나 몇 가지 일반적인 접근 방식은 다음과 같습니다.
- parse() 메서드 내부: 이 접근 방식에는 페이지 매김 및 데이터 추출을 처리하기 위해 스파이더의 parse() 메서드 내에서 Selenium을 사용하는 작업이 포함됩니다.
- 전용 Selenium 미들웨어 생성: 이 접근 방식을 사용하면 응답을 스파이더의 구문 분석() 메서드에 전달하기 전에 페이지 매김을 수행하는 사용자 정의 Selenium 미들웨어를 생성할 수 있습니다.
- 별도 스크립트에서 Selenium 실행: 또는 Scrapy 스파이더 외부의 별도 스크립트에서 Selenium 명령을 실행할 수 있습니다. 이를 통해 Selenium 로직을 보다 유연하게 제어할 수 있습니다.
Scrapy와 함께 Selenium을 사용하는 예
예를 들어, eBay에서 페이지가 매겨진 결과를 스크랩하고 싶다고 가정해 보겠습니다. . 다음 스니펫은 Selenium을 Scrapy와 통합하는 방법을 보여줍니다.
import scrapy from selenium import webdriver class ProductSpider(scrapy.Spider): name = "product_spider" allowed_domains = ['ebay.com'] start_urls = ['https://www.ebay.com/sch/i.html?_odkw=books&_osacat=0&_trksid=p2045573.m570.l1313.TR0.TRC0.Xpython&_nkw=python&_sacat=0&_from=R40'] def __init__(self): self.driver = webdriver.Firefox() def parse(self, response): self.driver.get(response.url) while True: next = self.driver.find_element_by_xpath('//td[@class="pagn-next"]/a') try: next.click() # Get and process the data here except: break self.driver.close()
대안: ScrapyJS 미들웨어 사용
어떤 경우에는 ScrapyJS 미들웨어를 사용하는 것만으로도 충분할 수 있습니다. Selenium이 필요하지 않은 웹페이지의 동적 부분. 이 미들웨어를 사용하면 scrapy 프레임워크 내에서 사용자 정의 JavaScript를 실행할 수 있습니다.
Selenium을 Scrapy와 통합하는 추가 예제 및 사용 사례는 제공된 링크를 참조하세요.
위 내용은 동적 웹 페이지를 효율적으로 스크랩하기 위해 Selenium을 Scrapy와 통합하려면 어떻게 해야 합니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화
