Flask의 JSONify(), to_dict(), make_response() 및 SerializerMixin 이해
Flask는 Python 객체를 JSON으로 변환하는 것부터 구조화된 HTTP 응답을 생성하는 것까지 데이터를 응답으로 변환하기 위한 여러 도구를 제공합니다. 이번 포스팅에서는 Flask에서 데이터 응답 작업을 위한 네 가지 유용한 함수 및 도구인 jsonify(), to_dict(), make_response() 및 SerializerMixin을 살펴보겠습니다. 이러한 도구를 이해하면 더 나은 API를 만들고 효과적인 데이터 관리를 하는 데 도움이 됩니다.
jsonify()
Python 데이터 구조를 API용 웹 개발에 널리 사용되는 경량 데이터 교환 형식인 JSON 형식으로 변환하는 내장 Flask 기능입니다. 이 함수는 자동으로 응답 Content-Type을 application/json으로 설정하고 Flask 응답 개체를 반환하므로 REST API에서 데이터를 반환하는 데 이상적입니다.
예:
from flask import jsonify @app.route('/data') def get_data(): data = {"message": "Hello, World!", "status": "success"} return jsonify(data)
여기서 jsonify(data)는 사전 데이터를 JSON 형식으로 변환하여 응답 본문으로 설정합니다. 이 함수는 JSON 변환 및 응답 형식을 자동으로 처리하므로 작고 잘 정의된 데이터를 반환해야 할 때 유용합니다. jsonify()는 간단한 데이터 유형에서는 잘 작동하지만 일부 변환(예: to_dict() 사용) 없이는 SQLAlchemy 모델과 같은 복잡한 개체를 직접 지원하지 않는다는 점에 유의하는 것이 중요합니다.
to_dict()
이는 기본 Flask 함수는 아니지만 SQLAlchemy 또는 기타 ORM(Object Relational Mapping) 모델 인스턴스를 사전으로 나타내기 위해 모델 클래스에서 일반적으로 사용됩니다. 모델 속성을 사전으로 변환하면 데이터를 API 응답을 위한 JSON 형식으로 더 쉽게 변환할 수 있습니다.
예:
class Student(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), nullable=False) def to_dict(self): return { "id": self.id, "username": self.username } @app.route('/user/<int:id>') def get_student(id): student = Student.query.get(id) return jsonify(student.to_dict()) if student else jsonify({"error": "Student not found"}), 404
to_dict() 메서드는 응답에 포함될 정확한 데이터를 지정할 수 있도록 하여 유연성을 제공합니다. 민감한 데이터(예: 비밀번호)를 숨기고 필요한 속성만 선택적으로 표시하는 데 유용합니다.
make_response()
사용자 정의 HTTP 응답을 생성할 수 있는 Flask 유틸리티 기능입니다. jsonify()는 JSON 데이터 응답을 단순화하는 반면, make_response()를 사용하면 상태 코드, 헤더 및 데이터 형식을 포함하여 응답의 모든 부분을 제어할 수 있습니다.
예:
from flask import make_response, jsonify from models import db class Student(db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(80), nullable=False) def to_dict(self): return { "id": self.id, "username": self.username } @app.route('/student/<int:id>', methods=['GET']) def get_student(id): # Query the database for the student student = Student.query.get(id) # If student is found, return data with a 200 status if student: response_data = { "message": "Student found", "data": student.to_dict() } return make_response(jsonify(response_data), 200) # If student is not found, return a structured error response with a 404 status error_data = { "error": "Student not found", "student_id": id, "status_code": 404 } return make_response(jsonify(error_data), 404)
여기서 make_response()를 사용하면 상태 코드와 응답 본문 형식을 제어할 수 있습니다. 이러한 유연성은 응답 개체 제어가 가장 중요한 경우에 이상적입니다.
SerializerMixin
이는 sqlalchemy-serializer 라이브러리에 있으며 SQLAlchemy 모델의 직렬화를 자동화하는 강력한 도구입니다. 모델 간의 관계를 포함하는 복잡한 데이터 유형을 처리할 수 있는 to_dict() 메서드를 제공하고 직렬화할 필드를 제어하는 serialize_rules 속성을 포함합니다.
사용법:
from flask import jsonify @app.route('/data') def get_data(): data = {"message": "Hello, World!", "status": "success"} return jsonify(data)
SerializerMixin은 SQLAlchemy 모델을 사전으로 자동 변환하므로 복잡한 모델 및 관계로 작업할 때 유용합니다. serialize_rules를 사용하면 필드나 관계를 동적으로 포함하거나 제외할 수 있으므로 각 모델에 대한 사용자 정의 to_dict 메소드를 작성하는 시간이 절약됩니다.
비교 및 연관성
이러한 각 도구는 Flask API를 구축하는 데 적합합니다. jsonify() 및 make_response()는 JSON 및 사용자 정의 응답을 생성하는 데 필수적인 Flask 함수인 반면, to_dict() 및 SerializerMixin은 더 쉬운 JSON 직렬화를 위해 모델 인스턴스를 사전으로 변환하는 데 중점을 둡니다.
각각의 사용 시기에 대한 요약은 다음과 같습니다.
- jsonify()를 사용하면 간단한 Python 데이터 구조를 JSON 형식으로 쉽게 변환할 수 있습니다.
- 특히 민감하거나 복잡한 데이터로 작업할 때 모델에서 to_dict()를 사용하여 JSON 변환을 위한 특정 필드가 포함된 사용자 정의 사전을 생성하세요.
- make_response()를 사용하여 HTTP 응답에 대한 전체 제어를 정의하고 상태 코드, 헤더 또는 사용자 정의 오류 메시지를 설정할 수 있습니다.
- SQLAlchemy 모델로 작업하고 최소한의 구성으로 모델(관계 포함)을 JSON으로 자동 변환하려는 경우 SerializerMixin을 사용하세요.
결론적으로 jsonify(), to_dict(), make_response() 및 SerializerMixin은 모두 Flask API에서 데이터를 변환하고 관리하는 데 필수적인 도구입니다. 이를 효과적으로 사용하면 API가 더욱 유연하고 안전하며 관리하기 쉬워집니다.
참고자료
Flask 문서: make_response()
SQLAlchemy SerializerMixin
위 내용은 Flask의 JSONify(), to_dict(), make_response() 및 SerializerMixin 이해의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
