PHP의 기계 학습: Rubix ML을 사용하여 뉴스 분류기 구축
소개
영화 추천, 이미지 태그 지정, 뉴스 기사 분류 등 기계 학습은 어디에나 있습니다. PHP 내에서 그렇게 할 수 있다고 상상해보세요! Rubix ML을 사용하면 간단하고 접근 가능한 방식으로 PHP에 머신러닝의 강력한 기능을 적용할 수 있습니다. 이 가이드는 기사를 '스포츠' 또는 '기술'과 같은 카테고리로 분류하는 간단한 뉴스 분류기를 구축하는 과정을 안내합니다. 결국에는 콘텐츠를 기반으로 새 기사의 카테고리를 예측할 수 있는 작동하는 분류기를 갖게 됩니다.
이 프로젝트는 PHP를 사용하여 기계 학습을 시작하려는 초보자에게 적합하며 GitHub에서 전체 코드를 따라갈 수 있습니다.
목차
- Rubix ML이란 무엇인가요?
- 프로젝트 설정
- 뉴스 분류 클래스 만들기
- 모델 훈련
- 신규 샘플 예측
- 최종 생각
Rubix ML이란 무엇입니까?
Rubix ML은 ML 도구와 알고리즘을 PHP 친화적인 환경에 제공하는 PHP용 기계 학습 라이브러리입니다. 분류, 회귀, 클러스터링 또는 자연어 처리 등 어떤 작업을 하든 Rubix ML이 해결해 드립니다. 이를 통해 데이터 로드 및 전처리, 모델 교육, 성능 평가 등을 모두 PHP에서 수행할 수 있습니다.
Rubix ML은 다음과 같은 광범위한 기계 학습 작업을 지원합니다.
- 분류: 이메일을 스팸 또는 스팸 아님으로 분류하는 등 데이터를 분류합니다.
- 회귀: 주택 가격과 같은 연속 값을 예측합니다.
- 클러스터링: 고객 세그먼트 찾기와 같이 라벨 없이 데이터를 그룹화합니다.
- 자연어 처리(NLP): 텍스트 데이터를 토큰화하고 ML에 사용할 수 있는 형식으로 변환하는 등의 작업을 수행합니다.
Rubix ML을 사용하여 PHP에서 간단한 뉴스 분류기를 구축하는 방법을 자세히 살펴보겠습니다!
프로젝트 설정
Rubix ML을 사용하여 새 PHP 프로젝트를 설정하고 자동 로딩을 구성하는 것부터 시작하겠습니다.
1단계: 프로젝트 디렉터리 초기화
새 프로젝트 디렉토리를 생성하고 탐색하세요.
mkdir NewsClassifier cd NewsClassifier
2단계: Composer와 함께 Rubix ML 설치
Composer가 설치되어 있는지 확인한 후 다음을 실행하여 프로젝트에 Rubix ML을 추가하세요.
composer require rubix/ml
3단계: Composer.json에서 자동 로딩 구성
프로젝트의 src 디렉터리에서 클래스를 자동 로드하려면 작곡가.json 파일을 열거나 생성하고 다음 구성을 추가하세요.
{ "autoload": { "psr-4": { "NewsClassifier\": "src/" } }, "require": { "rubix/ml": "^2.5" } }
이것은 Composer가 NewsClassifier 네임스페이스 아래 src 폴더 내의 모든 클래스를 자동 로드하도록 지시합니다.
4단계: Composer 자동 로드 덤프 실행
자동 로드 구성을 추가한 후 다음 명령을 실행하여 Composer의 자동 로더를 다시 생성하세요.
mkdir NewsClassifier cd NewsClassifier
5단계: 디렉터리 구조
프로젝트 디렉토리는 다음과 같습니다.
composer require rubix/ml
- src/: PHP 스크립트가 포함되어 있습니다.
- 저장소/: 훈련된 모델이 저장될 위치
- vendor/: Composer가 설치한 종속성을 포함합니다.
뉴스 분류 클래스 만들기
src/에 Classification.php라는 파일을 만듭니다. 이 파일에는 모델을 훈련하고 뉴스 카테고리를 예측하는 방법이 포함됩니다.
{ "autoload": { "psr-4": { "NewsClassifier\": "src/" } }, "require": { "rubix/ml": "^2.5" } }
이 분류 클래스에는 다음을 수행하는 메서드가 포함되어 있습니다.
- 학습: 파이프라인 기반 모델을 생성하고 학습합니다.
- 모델 저장: 훈련된 모델을 지정된 경로에 저장합니다.
- 예측: 저장된 모델을 로드하고 새 샘플의 카테고리를 예측합니다.
모델 훈련
src/에 train.php라는 스크립트를 생성하여 모델을 훈련합니다.
composer dump-autoload
모델을 학습하려면 다음 스크립트를 실행하세요.
NewsClassifier/ ├── src/ │ ├── Classification.php │ └── train.php ├── storage/ ├── vendor/ ├── composer.json └── composer.lock
성공하면 다음이 표시됩니다.
<?php namespace NewsClassifier; use Rubix\ML\Classifiers\KNearestNeighbors; use Rubix\ML\Datasets\Labeled; use Rubix\ML\Datasets\Unlabeled; use Rubix\ML\PersistentModel; use Rubix\ML\Pipeline; use Rubix\ML\Tokenizers\Word; use Rubix\ML\Transformers\TfIdfTransformer; use Rubix\ML\Transformers\WordCountVectorizer; use Rubix\ML\Persisters\Filesystem; class Classification { private $modelPath; public function __construct($modelPath) { $this->modelPath = $modelPath; } public function train() { // Sample data and corresponding labels $samples = [ ['The team played an amazing game of soccer'], ['The new programming language has been released'], ['The match between the two teams was incredible'], ['The new tech gadget has been launched'], ]; $labels = [ 'sports', 'technology', 'sports', 'technology', ]; // Create a labeled dataset $dataset = new Labeled($samples, $labels); // Set up the pipeline with a text transformer and K-Nearest Neighbors classifier $estimator = new Pipeline([ new WordCountVectorizer(10000, 1, 1, new Word()), new TfIdfTransformer(), ], new KNearestNeighbors(4)); // Train the model $estimator->train($dataset); // Save the model $this->saveModel($estimator); echo "Training completed and model saved.\n"; } private function saveModel($estimator) { $persister = new Filesystem($this->modelPath); $model = new PersistentModel($estimator, $persister); $model->save(); } public function predict(array $samples) { // Load the saved model $persister = new Filesystem($this->modelPath); $model = PersistentModel::load($persister); // Predict categories for new samples $dataset = new Unlabeled($samples); return $model->predict($dataset); } }
새로운 샘플 예측
src/에 또 다른 스크립트인 예측.php를 생성하여 훈련된 모델을 기반으로 새 기사를 분류합니다.
<?php require __DIR__ . '/../vendor/autoload.php'; use NewsClassifier\Classification; // Define the model path $modelPath = __DIR__ . '/../storage/model.rbx'; // Initialize the Classification object $classifier = new Classification($modelPath); // Train the model and save it $classifier->train();
예측 스크립트를 실행하여 샘플을 분류합니다.
php src/train.php
출력에는 예측 카테고리와 함께 각 샘플 텍스트가 표시되어야 합니다.
최종 생각
이 가이드를 통해 Rubix ML을 사용하여 PHP로 간단한 뉴스 분류자를 성공적으로 구축했습니다! 이는 텍스트 분류, 추천 시스템 등과 같은 작업에 기계 학습 기능을 도입하여 PHP가 생각보다 더 다재다능할 수 있음을 보여줍니다. 이 프로젝트의 전체 코드는 GitHub에서 확인할 수 있습니다.
분류자를 확장하기 위해 다양한 알고리즘이나 데이터를 실험해 보세요. PHP가 머신러닝을 할 수 있다는 것을 누가 알았을까요? 이제 그렇습니다.
즐거운 코딩하세요!
위 내용은 PHP의 기계 학습: Rubix ML을 사용하여 뉴스 분류기 구축의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP에서 Password_hash 및 Password_Verify 기능을 사용하여 보안 비밀번호 해싱을 구현해야하며 MD5 또는 SHA1을 사용해서는 안됩니다. 1) Password_hash는 보안을 향상시키기 위해 소금 값이 포함 된 해시를 생성합니다. 2) Password_verify 암호를 확인하고 해시 값을 비교하여 보안을 보장합니다. 3) MD5 및 SHA1은 취약하고 소금 값이 부족하며 현대 암호 보안에는 적합하지 않습니다.

PHP와 Python은 각각 고유 한 장점이 있으며 프로젝트 요구 사항에 따라 선택합니다. 1.PHP는 웹 개발, 특히 웹 사이트의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 간결한 구문을 가진 데이터 과학, 기계 학습 및 인공 지능에 적합하며 초보자에게 적합합니다.

PHP는 전자 상거래, 컨텐츠 관리 시스템 및 API 개발에 널리 사용됩니다. 1) 전자 상거래 : 쇼핑 카트 기능 및 지불 처리에 사용됩니다. 2) 컨텐츠 관리 시스템 : 동적 컨텐츠 생성 및 사용자 관리에 사용됩니다. 3) API 개발 : 편안한 API 개발 및 API 보안에 사용됩니다. 성능 최적화 및 모범 사례를 통해 PHP 애플리케이션의 효율성과 유지 보수 성이 향상됩니다.

PHP 유형은 코드 품질과 가독성을 향상시키기위한 프롬프트입니다. 1) 스칼라 유형 팁 : PHP7.0이므로 int, float 등과 같은 기능 매개 변수에 기본 데이터 유형을 지정할 수 있습니다. 2) 반환 유형 프롬프트 : 기능 반환 값 유형의 일관성을 확인하십시오. 3) Union 유형 프롬프트 : PHP8.0이므로 기능 매개 변수 또는 반환 값에 여러 유형을 지정할 수 있습니다. 4) Nullable 유형 프롬프트 : NULL 값을 포함하고 널 값을 반환 할 수있는 기능을 포함 할 수 있습니다.

PHP는 여전히 역동적이며 현대 프로그래밍 분야에서 여전히 중요한 위치를 차지하고 있습니다. 1) PHP의 단순성과 강력한 커뮤니티 지원으로 인해 웹 개발에 널리 사용됩니다. 2) 유연성과 안정성은 웹 양식, 데이터베이스 작업 및 파일 처리를 처리하는 데 탁월합니다. 3) PHP는 지속적으로 발전하고 최적화하며 초보자 및 숙련 된 개발자에게 적합합니다.

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP에서 전처리 문과 PDO를 사용하면 SQL 주입 공격을 효과적으로 방지 할 수 있습니다. 1) PDO를 사용하여 데이터베이스에 연결하고 오류 모드를 설정하십시오. 2) 준비 방법을 통해 전처리 명세서를 작성하고 자리 표시자를 사용하여 데이터를 전달하고 방법을 실행하십시오. 3) 쿼리 결과를 처리하고 코드의 보안 및 성능을 보장합니다.

PHP와 Python은 고유 한 장점과 단점이 있으며 선택은 프로젝트 요구와 개인 선호도에 달려 있습니다. 1.PHP는 대규모 웹 애플리케이션의 빠른 개발 및 유지 보수에 적합합니다. 2. Python은 데이터 과학 및 기계 학습 분야를 지배합니다.
