Python 구문에 새 명령문을 어떻게 추가할 수 있나요?
Python의 구문에 새로운 문을 추가하는 것이 가능합니까?
예, Python의 구문에 새로운 문을 추가하는 것이 가능합니다. 하지만 이를 위해서는 Python 인터프리터의 코드를 수정해야 합니다.
Python 구문에 새 명령문을 어떻게 추가할 수 있나요?
문법 파일(문법/문법)을 수정하여 다음과 같이 할 수 있습니다. 새 문에 대한 정의를 추가하고 AST 생성 코드(Python/ast.c)를 수정하여 새 구문 분석 트리 노드를 AST 노드로 변환합니다. 그런 다음 바이트코드 컴파일 코드(Python/compile.c)를 수정하여 새 문을 바이트코드로 컴파일합니다. 마지막으로 기호 테이블 생성 코드(Python/symtable.c)를 수정하여 새 문을 처리합니다.
예:
"until" 문을 추가하려면 "while"의 보완:
- 문법/문법에 "until" 문에 대한 정의 추가:
<code class="text">compound_stmt: if_stmt | while_stmt | until_stmt | for_stmt | try_stmt | with_stmt | funcdef | classdef | decorated until_stmt: 'until' test ':' suite</code>
- 다음에 대한 AST 노드 추가 Python/ast.c의 "until" 문:
<code class="c">| Until(expr test, stmt* body)</code>
- ast_for_until_stmt() 함수를 구현하여 "until" 문에 대한 AST 노드를 생성합니다:
<code class="c">static stmt_ty ast_for_until_stmt(struct compiling *c, const node *n) { /* until_stmt: 'until' test ':' suite */ REQ(n, until_stmt); if (NCH(n) == 4) { expr_ty expression; asdl_seq *suite_seq; expression = ast_for_expr(c, CHILD(n, 1)); if (!expression) return NULL; suite_seq = ast_for_suite(c, CHILD(n, 3)); if (!suite_seq) return NULL; return Until(expression, suite_seq, LINENO(n), n->n_col_offset, c->c_arena); } PyErr_Format(PyExc_SystemError, "wrong number of tokens for 'until' statement: %d", NCH(n)); return NULL; }</code>
- "until" 문을 바이트코드로 컴파일하려면 컴파일러_until() 함수를 구현하세요.
<code class="c">static int compiler_until(struct compiler *c, stmt_ty s) { basicblock *loop, *end, *anchor = NULL; int constant = expr_constant(s->v.Until.test); if (constant == 1) { return 1; } loop = compiler_new_block(c); end = compiler_new_block(c); if (constant == -1) { anchor = compiler_new_block(c); if (anchor == NULL) return 0; } if (loop == NULL || end == NULL) return 0; ADDOP_JREL(c, SETUP_LOOP, end); compiler_use_next_block(c, loop); if (!compiler_push_fblock(c, LOOP, loop)) return 0; if (constant == -1) { VISIT(c, expr, s->v.Until.test); ADDOP_JABS(c, POP_JUMP_IF_TRUE, anchor); } VISIT_SEQ(c, stmt, s->v.Until.body); ADDOP_JABS(c, JUMP_ABSOLUTE, loop); if (constant == -1) { compiler_use_next_block(c, anchor); ADDOP(c, POP_BLOCK); } compiler_pop_fblock(c, LOOP, loop); compiler_use_next_block(c, end); return 1; }</code>
- Python/에서 Symtable_visit_stmt() 함수를 수정하세요. "until" 문을 처리하기 위한 Symtable.c:
<code class="c">case While_kind: VISIT(st, expr, s->v.While.test); VISIT_SEQ(st, stmt, s->v.While.body); if (s->v.While.orelse) VISIT_SEQ(st, stmt, s->v.While.orelse); break; case Until_kind: VISIT(st, expr, s->v.Until.test); VISIT_SEQ(st, stmt, s->v.Until.body); break;</code>
참고: 이는 높은 수준의 개요입니다. 자세한 단계와 설명은 인용된 기사를 참조하세요.
위 내용은 Python 구문에 새 명령문을 어떻게 추가할 수 있나요?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

뜨거운 주제











Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
