Pandas DataFrame을 열 값으로 나누는 방법은 무엇입니까?
Pandas DataFrame을 열 값으로 나누는 방법
열 값을 기준으로 Pandas DataFrame을 분할하는 것은 별도의 하위 집합을 만드는 데 유용할 수 있습니다. 데이터. 'Sales'라는 열이 있는 DataFrame이 있고 이를 두 개의 DataFrame으로 나누고 싶다고 가정합니다. 하나는 'Sales'가 지정된 값보다 작은 행을 포함하고 다른 하나는 'Sales'가 지정된 값보다 크거나 같은 행을 포함합니다. 해당 값.
이를 달성하려면 다음 단계에 따라 부울 인덱싱을 사용할 수 있습니다.
- 분할 값 정의: 원하는 값을 변수에 할당 , s.
- 부울 마스크 만들기: 부울 인덱싱을 사용하여 두 개의 마스크를 만듭니다: df['Sales'] < s(s보다 작은 값의 경우) 및 df['Sales'] >= s(s보다 크거나 같은 값의 경우).
-
DataFrame 분할: 적용 부울 마스크를 원래 DataFrame에 추가하여 두 개의 새로운 DataFrame을 생성합니다.
- df1 = df[df['Sales'] >= s] ('Sales' >= s가 포함된 DataFrame)
- df2 = df[df['판매량'] < s] ('Sales' < s가 포함된 DataFrame)
또는 ~ 연산자를 사용하여 첫 번째 마스크를 반전할 수 있습니다.
mask = df['Sales'] >= s df1 = df[mask] df2 = df[~mask]<p>다음은 다음과 같습니다. 프로세스를 설명하는 예:</p> <pre class="brush:php;toolbar:false"><code class="python">df = pd.DataFrame({'Sales': [10, 20, 30, 40, 50], 'A': [3, 4, 7, 6, 1]}) print(df) s = 30 df1 = df[df['Sales'] >= s] print(df1) df2 = df[df['Sales'] < s] print(df2)</code>
출력은 다음과 같습니다.
A Sales 0 3 10 1 4 20 2 7 30 3 6 40 4 1 50 A Sales 2 7 30 3 6 40 4 1 50 A Sales 0 3 10 1 4 20
이는 부울 인덱싱을 사용하여 지정된 열 값을 기반으로 Pandas DataFrame을 두 개로 분할하는 방법을 보여줍니다.
위 내용은 Pandas DataFrame을 열 값으로 나누는 방법은 무엇입니까?의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.
