Python을 사용한 포괄적인 기상 데이터 분석: 온도, 강수량 추세 및 시각화
-
케냐의 여러 도시에 대한 기상 데이터 분석 및 예측
- 소개
- 데이터세트 개요
- 탐색적 데이터 분석
- 주요 날씨 특징 시각화
- 기상분석
- 도시별 강수량
- 월평균기온
- 월평균 강우량
- 날씨변수의 상관관계
- 사례 연구: 도시별 동향
- 결론
케냐의 여러 도시에 대한 기상 데이터 분석 및 예측
소개
이 글에서는 Python을 사용하여 날씨 패턴을 분석하는 방법을 안내하겠습니다. 온도 추세 식별부터 강수량 시각화까지 이 단계별 가이드는 날씨 분석을 위한 데이터 과학 기술 사용에 관심이 있는 모든 사람에게 적합합니다. 실용적인 통찰력을 얻기 위해 코드, 데이터 조작 및 시각화를 탐구하겠습니다.
케냐에서 날씨는 다양한 분야, 특히 농업, 관광, 야외 활동에서 중요한 역할을 합니다. 농부, 기업, 이벤트 기획자는 결정을 내리기 위해 정확한 날씨 정보가 필요합니다. 그러나 날씨 패턴은 지역마다 크게 다를 수 있으며 현재 예측 시스템이 항상 현지화된 통찰력을 제공하는 것은 아닙니다.
이 프로젝트의 목적은 OpenWeatherMap API 및 Weather API에서 케냐 전역의 다양한 지역에 대한 실시간 날씨 데이터를 수집하는 것입니다. 이 데이터는 데이터베이스에 저장되고 Python을 사용하여 분석되어 다음에 대한 통찰력을 얻습니다.-
- 온도 추세
- 강우 패턴 - 습도 및 바람 조건
이 프로젝트에서는 케냐 여러 도시의 날씨 정보가 포함된 데이터 세트를 분석합니다. 데이터 세트에는 온도, 습도, 기압, 풍속, 가시성, 강우량 등 다양한 요인을 포함하여 3,000개 이상의 기상 관측 데이터가 포함되어 있습니다. 이러한 통찰력을 사용하여 우리는 농업, 관광, 심지어 경영과 같이 날씨에 민감한 분야의 의사 결정에 도움이 될 수 있는 정확한 지역별 일기 예보를 제공하는 것을 목표로 합니다.
데이터 세트 개요
데이터세트는 여러 열을 사용하여 구성되었습니다.
- Datetime - 날씨가 기록된 시간을 나타내는 타임스탬프입니다.
- 도시 및 국가 - 기상관측 위치
- 위도 및 경도 - 해당 위치의 지리적 좌표
- 온도(섭씨) - 기록된 온도입니다.
- 습도(%) - 공기 중 습도의 비율입니다.
- 압력(hPa) - 헥토파스칼 단위의 대기압입니다.
- 풍속(m/s) - 당시의 바람의 속도
- 비(mm) - 밀리미터 단위로 측정한 강수량
- 구름(%) - 구름이 덮이는 비율입니다.
- 날씨 상태 및 날씨 설명 - 날씨에 대한 일반 및 자세한 설명(예: '구름', '흩어진 구름')
데이터베이스의 데이터는 이렇게 구성되어 있습니다.
탐색적 데이터 분석
분석의 첫 번째 단계에는 데이터에 대한 기본적인 탐색이 포함되었습니다.
_ 데이터 차원 - 데이터세트에는 3,000개의 행과 14개의 열이 포함되어 있습니다.
_ Null 값 - 누락된 데이터가 최소화되어 추가 분석을 위해 데이터 세트를 신뢰할 수 있습니다.
print(df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].describe())
위 코드를 사용하여 숫자 열에 대한 요약 통계를 계산하여 온도, 습도, 기압, 강수량 및 구름의 범위, 평균 및 확산에 대한 통찰력을 제공했습니다.
주요 날씨 특징 시각화
날씨 특징을 더 명확하게 이해하기 위해 다양한 분포를 그렸습니다.
온도 분포
sns.displot(df1['temperature_celsius'], bins=50, kde=True) plt.title('Temperature Distribution') plt.xlabel('Temperature (Celsius)')
이 분포는 도시 전체의 일반적인 기온 분포를 나타냅니다. KDE 선 도표는 온도 확률 분포를 원활하게 추정합니다.
강우량 분포
sns.displot(df1['rain'], bins=50, kde=True) plt.title('Rainfall Distribution') plt.xlabel('Rainfall (mm/h)')
이 코드는 케냐 도시 전체의 강수량 분포를 분석합니다.
습도, 기압, 풍속
습도(%), 기압(hPa) 및 풍속(m/s)에 대한 유사한 분포도는 각각 다음과 같은 유용한 통찰력을 제공합니다. 데이터세트 전반에 걸쳐 이러한 매개변수의 변형이 발생합니다.
기상상태 분석
날씨 조건(예: '구름', '비')을 계산하고 원형 차트를 사용하여 시각화하여 비례 분포를 표시했습니다.
condition_counts = df1['weather_condition'].value_counts() plt.figure(figsize=(8,8)) plt.pie(condition_counts, labels=condition_counts.index, autopct='%1.1f%%', pctdistance=1.1, labeldistance=0.6, startangle=140) plt.title('Distribution of Weather Conditions') plt.axis('equal') plt.show()
City-wise Rainfall
One of the key analysis was the total rainfall by city:
rainfall_by_city = df1.groupby('city')['rain'].sum().sort_values() plt.figure(figsize=(12,12)) rainfall_by_city.plot(kind='barh', color='skyblue') plt.title('Total Rainfall by City') plt.xlabel('Total Rainfall (mm)') plt.ylabel('City') plt.tight_layout() plt.show()
This bar plot highlighted which cities received the most rain over the observed period, with a few outliers showing significant rainfall compared to others.
Average Monthly Temperature
avg_temp_by_month.plot(kind='line') plt.title('Average Monthly Temperature')
The line chart revealed temperature fluctuations across different months, showing seasonal changes.
Average Monthly Rainfall
monthly_rain.plot(kind='line') plt.title('Average Monthly Rainfall')
Similarly, rainfall was analyzed to observe how it varied month-to-month.
We also visualized the data using heatmaps for a more intuitive understanding of monthly temperature and rainfall.
Here are the heatmaps for the average monthly temperature and rainfall
Correlation Between Weather Variables
Next, I calculated the correlation matrix between key weather variables:
correlation_matrix = df1[['temperature_celsius', 'humidity_pct', 'pressure_hpa', 'wind_speed_ms', 'rain', 'clouds']].corr() correlation_matrix sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm') plt.title('Correlation Between Weather Variables')
This heatmap allowed us to identify relationships between variables. For example, we observed a negative correlation between temperature and humidity, as expected.
Case Study: City Specific Trends
I have focused on individual cities such as Mombasa and Nyeri, to explore their unique weather patterns:
Mombasa Temperature Trends
plt.plot(monthly_avg_temp_msa) plt.title('Temperature Trends in Mombasa Over Time')
This city showed significant variation in temperature across the year.
Nyeri Rainfall Trends
plt.plot(monthly_avg_rain_nyr) plt.title('Rainfall Trends in Nyeri Over Time')
The rainfall data for Nyeri displayed a clear seasonal pattern, with rainfall peaking during certain months.
Conclusion
This analysis provides a comprehensive overview of the weather conditions in major cities, highlighting the temperature, rainfall, and other key weather variables. By using visualizations like histograms, line charts, pie charts, and heatmaps, we were able to extract meaningful insights into the data. Further analysis could involve comparing these trends with historical weather patterns or exploring predictive modeling to forecast future weather trends.
You can find the Jupyter Notebook with the full code for this analysis in my GitHub repository).
위 내용은 Python을 사용한 포괄적인 기상 데이터 분석: 온도, 강수량 추세 및 시각화의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

Python은 데이터 과학, 웹 개발 및 자동화 작업에 적합한 반면 C는 시스템 프로그래밍, 게임 개발 및 임베디드 시스템에 적합합니다. Python은 단순성과 강력한 생태계로 유명하며 C는 고성능 및 기본 제어 기능으로 유명합니다.

2 시간 이내에 Python의 기본 프로그래밍 개념과 기술을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우기, 2. 마스터 제어 흐름 (조건부 명세서 및 루프), 3. 기능의 정의 및 사용을 이해하십시오. 4. 간단한 예제 및 코드 스 니펫을 통해 Python 프로그래밍을 신속하게 시작하십시오.

Python은 게임 및 GUI 개발에서 탁월합니다. 1) 게임 개발은 Pygame을 사용하여 드로잉, 오디오 및 기타 기능을 제공하며 2D 게임을 만드는 데 적합합니다. 2) GUI 개발은 Tkinter 또는 PYQT를 선택할 수 있습니다. Tkinter는 간단하고 사용하기 쉽고 PYQT는 풍부한 기능을 가지고 있으며 전문 개발에 적합합니다.

2 시간 이내에 파이썬의 기본 사항을 배울 수 있습니다. 1. 변수 및 데이터 유형을 배우십시오. 이를 통해 간단한 파이썬 프로그램 작성을 시작하는 데 도움이됩니다.

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

제한된 시간에 Python 학습 효율을 극대화하려면 Python의 DateTime, Time 및 Schedule 모듈을 사용할 수 있습니다. 1. DateTime 모듈은 학습 시간을 기록하고 계획하는 데 사용됩니다. 2. 시간 모듈은 학습과 휴식 시간을 설정하는 데 도움이됩니다. 3. 일정 모듈은 주간 학습 작업을 자동으로 배열합니다.

Python은 웹 개발, 데이터 과학, 기계 학습, 자동화 및 스크립팅 분야에서 널리 사용됩니다. 1) 웹 개발에서 Django 및 Flask 프레임 워크는 개발 프로세스를 단순화합니다. 2) 데이터 과학 및 기계 학습 분야에서 Numpy, Pandas, Scikit-Learn 및 Tensorflow 라이브러리는 강력한 지원을 제공합니다. 3) 자동화 및 스크립팅 측면에서 Python은 자동화 된 테스트 및 시스템 관리와 같은 작업에 적합합니다.

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.
