백엔드 개발 파이썬 튜토리얼 Python에서 이상값 처리 - IQR 방법

Python에서 이상값 처리 - IQR 방법

Oct 11, 2024 am 10:45 AM

소개

실제 데이터에서 통찰력을 얻기 전에 데이터를 면밀히 조사하여 데이터가 일관되고 오류가 없는지 확인하는 것이 중요합니다. 그러나 데이터에는 오류가 포함될 수 있으며 일부 값은 다른 값과 다르게 나타날 수 있으며 이러한 값을 이상값이라고 합니다. 이상값은 데이터 분석에 부정적인 영향을 미쳐 잘못된 통찰력으로 이어져 이해관계자의 잘못된 의사결정을 초래합니다. 따라서 이상값을 처리하는 것은 데이터 과학의 데이터 전처리 단계에서 중요한 단계입니다. 이 기사에서는 이상값을 처리할 수 있는 다양한 방법을 평가해 보겠습니다.

특이치

이상값은 데이터 세트에 있는 대부분의 데이터 포인트와 크게 다른 데이터 포인트입니다. 이는 특정 변수에 대해 예상되거나 일반적인 값 범위를 벗어나는 값입니다. 이상값은 데이터 입력 중 오류, 샘플링 오류 등 다양한 이유로 발생합니다. 기계 학습에서 이상값으로 인해 모델이 잘못된 예측을 하게 되어 부정확한 예측이 발생할 수 있습니다.

Jupyter 노트북을 사용하여 데이터세트에서 이상값 감지

  • Python 라이브러리 가져오기
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
plt.style.use('ggplot')
로그인 후 복사
  • Pandas를 사용하여 csv 파일 로드
df_house_price = pd.read_csv(r'C:\Users\Admin\Desktop\csv files\housePrice.csv')
로그인 후 복사
  • 집값 데이터 세트의 처음 5개 행을 확인하여 데이터프레임을 살펴보세요.
df_house_price.head()
로그인 후 복사

Handling Outliers in Python - IQR Method

  • 상자 그림을 사용하여 가격 열의 이상값 확인
sns.boxplot(df_house_price['Price'])
plt.title('Box plot showing outliers in prices')
plt.show()
로그인 후 복사

Handling Outliers in Python - IQR Method

  • 박스 플롯 시각화에서 가격 열에 이상값이 있습니다.
  • 이제 더 나은 의사결정을 내리고 머신러닝 모델이 올바른 예측을 할 수 있도록 이러한 이상값을 처리하는 방법을 찾아야 합니다.

이상치 값을 처리하는 IQR 방법

  • IQR 방법은 사분위간 범위가 데이터의 중간 절반의 확산을 측정한다는 것을 의미합니다. 표본의 중간 50%에 대한 범위입니다.

사분위간 범위를 사용하여 이상값을 제거하는 단계

  • 데이터의 25%에 해당하는 1사분위수(Q1)와 데이터의 75%에 해당하는 3사분위수(Q3)를 계산합니다.
Q1 = df_house_price['Price'].quantile(0.25)
Q3 = df_house_price['Price'].quantile(0.75)
로그인 후 복사
  • 사분위수 범위 계산
IQR = Q3 - Q1
로그인 후 복사
  • 이상치 경계를 결정합니다.
lower_bound = Q1 - 1.5 * IQR
로그인 후 복사

Handling Outliers in Python - IQR Method

  • 하한은 -5454375000.0 미만의 모든 값이 이상값임을 의미합니다.
upper_bound = Q3 + 1.5 * IQR
로그인 후 복사

Handling Outliers in Python - IQR Method

  • 상한은 12872625000.0보다 큰 값이 이상값이라는 의미입니다.

  • 가격 열에서 이상값 제거

filt = (df_house_price['Price'] >= lower_bound) & (df_house_price['Price'] <= upper_bound)

df = df_house_price[filt]
df.head()
로그인 후 복사

Handling Outliers in Python - IQR Method

  • 이상값을 제거한 후의 상자 그림
sns.boxplot(df['Price'])
plt.title('Box plot after removing outliers')
plt.show()
로그인 후 복사

Handling Outliers in Python - IQR Method

이상치 값을 처리하는 다양한 방법

  • Z-점수 방법
  • 백분위수 상한(Winsorizing)
  • 트리밍(잘림)
  • 대체
  • 클러스터링 기반 방법(예: DBSCAN)

결론

IQR 방법은 이상값에 대해 간단하고 강력하며 정규성 가정에 의존하지 않습니다. 단점은 단변량 데이터만 처리할 수 있고, 데이터가 치우쳐 있거나 꼬리가 굵은 경우 유효한 데이터 포인트를 제거할 수 있다는 점입니다.

감사합니다
자세한 내용을 보려면 링크된 링크와 github에서 저를 팔로우하세요.

위 내용은 Python에서 이상값 처리 - IQR 방법의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles