백엔드 개발 C++ malloc() 및 free() 구현 - 오래된 메모리가 먼저 재사용됨

malloc() 및 free() 구현 - 오래된 메모리가 먼저 재사용됨

Oct 11, 2024 am 10:12 AM

malloc() と free() の実装に関するこのシリーズの前回の 投稿 では、新しいブロックを解放することでメモリ ブロックを再利用し、ヒープを削減する方法を示しました。ただし、現在の関数には微妙な問題があります。新しいブロックの再利用が優先されるため、時間の経過とともにメモリ消費量が増加する可能性があります。なぜこのようなことが起こるのでしょうか?分解してみましょう。

最近のブロックを再利用してヒープを削減

次のシナリオを考えてみましょう。まず、4 つのメモリ ブロックを割り当てます。

void *ptr1 = abmalloc(8);
void *ptr2 = abmalloc(8);
void *ptr3 = abmalloc(8);
void *ptr4 = abmalloc(8);
로그인 후 복사

メモリ構造は次のように視覚化できます:

Implementing malloc() and free() — old memory reused first

さて、最初と 3 番目のブロックを解放します…

abfree(ptr1);
abfree(ptr3);
로그인 후 복사

…次の構造になります:

Implementing malloc() and free() — old memory reused first

次に、同じサイズの別のブロックを割り当てます。

void *ptr5 = abmalloc(8);
로그인 후 복사

関数 abmalloc() が最新の空きブロックの検索を開始すると、先頭のブロックが再利用されます。ここで最後のブロックを解放するとします:

Implementing malloc() and free() — old memory reused first

ここで最後のブロックを解放すると…

abfree(ptr4);
로그인 후 복사

…前のブロックはもう空いていないため、ヒープ サイズを 8 バイト ブロック 1 つだけ減らすことができます。

Implementing malloc() and free() — old memory reused first

古いブロックの再利用

ここで、同じシナリオを想像してください。ただし、変更が 1 つあります。関数は、最も古いブロックから空きブロックの検索を開始します。初期構造は同じになります…

Implementing malloc() and free() — old memory reused first

…そして再び最初と 3 番目のメモリ ブロックを解放します:

Implementing malloc() and free() — old memory reused first

今回は、最初のブロックが再利用されます:

Implementing malloc() and free() — old memory reused first

最後のブロックを解放すると、先頭に 2 つの空きブロックができ、ヒープを 8 バイト ブロック 2 つ減らすことができます。

Implementing malloc() and free() — old memory reused first

この例は、新しいブロックを優先することで、古い未使用のブロックが蓄積され、メモリが浪費され、不必要なヒープの増加につながることを示しています。解決策は、古いブロックの再利用を優先して検索戦略を変更することです。

古いブロックの優先の実装

この問題を解決するには、ヘッダー内の次のブロックへのポインターを追加することから始めます。また、最初のブロックへのグローバル ポインターも作成します。これにより、そこから検索を開始できます。

typedef struct Header {
  struct Header *previous, *next;
  size_t size;
  bool available;
} Header;
Header *first = NULL;
Header *last = NULL;
로그인 후 복사

2 つの異なる状況でヘッダーを持つメモリ ブロックを作成するので、小さなリファクタリングを行いましょう。ヘッダーを割り当てて初期化するヘルパー関数にこのロジックを抽出します (フィールド nextwith NULL の設定を含む)。

Header *header_new(Header *previous, size_t size, bool available) {
  Header *header = sbrk(sizeof(Header) + size);
  header->previous = previous;
  header->next = NULL;
  header->size = size;
  header->available = false;
  return header;
}
로그인 후 복사

この新しい関数を使用すると、abmalloc() 内のロジックを簡素化できます。

void *abmalloc(size_t size) { 
  if (size == 0) { 
    return NULL; 
  } 
  Header *header = last; 
  while (header != NULL) { 
    if (header->available && (header->size >= size)) { 
      header->available = false; 
      return header + 1; 
    } 
    header = header->previous; 
  } 
  last = header_new(last, size, false); 
  return last + 1; 
}
로그인 후 복사

これで、最初と最後のブロックにアクセスできるようになり、ブロックが与えられると、前後のブロックを見つけることができます。また、最初のブロックへのポインターが null の場合、まだブロックが割り当てられていないこともわかります。したがって、この場合は、ブロックをすぐに割り当て、最初と最後の両方を初期化します。

void *abmalloc(size_t size) { 
  if (size == 0) { 
    return NULL; 
  } 
  if (first == NULL) { 
    first = last = header_new(NULL, size, false); 
    return first + 1; 
  }
로그인 후 복사

最初に NULL でなくなった場合は、すでに割り当てられたブロックがあるため、再利用可能なブロックの検索を開始します。引き続き変数ヘッダーをイテレータとして使用しますが、検索は最新のブロックから開始するのではなく、最も古いブロックから開始します:

  Header *header = first;
로그인 후 복사

各反復で、前のブロックに戻るのではなく、シーケンス内の次のブロックに進みます。

  while (header != NULL) { 
    if (header->available && (header->size >= size)) { 
      header->available = false; 
      return header + 1; 
    } 
    header = header->next; 
  }
로그인 후 복사

ロジックは同じです。十分なサイズの利用可能なブロックが見つかった場合は、それが返されます。それ以外の場合、リストを走査した後に再利用可能なブロックが見つからない場合は、新しいブロックが割り当てられます:

  last = header_new(last, size, false);
로그인 후 복사

ここで、最後のブロック (割り当て後、最後から 2 番目) を調整する必要があります。 NULL を指していましたが、今度は新しいブロックを指しているはずです。これを行うには、前のブロックの次のフィールドを新しい最後のブロックに設定します。

  last->previous->next = last; 
  return last + 1; 
}
로그인 후 복사

Adjustments in abfree()

The function abfree() basically maintains the same structure, but now we must handle some edge cases. When we free blocks at the top of the heap, a new block becomes the last one, as we already do in this snippet:

    last = header->previous;
    brk(header)
로그인 후 복사

Here, the pointer header references the last non-null block available on the stack. We have two possible scenarios:

  1. the current block has a previous block, which will become the new last block. In this case, we should set the pointer nextof this block to NULL.
  2. the current block does not have a previous block (i.e., it is the first and oldest block). When it is freed, the stack is empty. In this case, instead of trying to update a field of a non-existent block, we simply set it first to NULL, indicating that there are no more allocated blocks.

Here is how we implement it:

  last = header->previous; 
  if (last != NULL) { 
    last->next = NULL; 
  } else { 
    first = NULL; 
  } 
  brk(header);
로그인 후 복사

Conclusion

Our functions abmalloc() and abfree() now look like this:

typedef struct Header {
  struct Header *previous, *next;
  size_t size;
  bool available;
} Header;

Header *first = NULL;
Header *last = NULL;

Header *header_new(Header *previous, size_t size, bool available) {
  Header *header = sbrk(sizeof(Header) + size);
  header->previous = previous;
  header->next = NULL;
  header->size = size;
  header->available = false;
  return header;
}

void *abmalloc(size_t size) {
  if (size == 0) {
    return NULL;
  }
  if (first == NULL) {
    first = last = header_new(NULL, size, false);
    return first + 1;
  }
  Header *header = first;
  while (header != NULL) {
    if (header->available && (header->size >= size)) {
      header->available = false;
      return header + 1;
    }
    header = header->next;
  }
  last = header_new(last, size, false);
  last->previous->next = last;
  return last + 1;
}

void abfree(void *ptr) {
  if (ptr == NULL) {
   return;
  }
  Header *header = (Header*) ptr - 1;
  if (header == last) {
    while ((header->previous != NULL) && header->previous->available) {
      header = header->previous;
    }
    last = header->previous;
    if (last != NULL) {
      last->next = NULL;
    } else {
      first = NULL;
    }
    brk(header);
  } else {
   header->available = true;
  }
 }
로그인 후 복사

This change allows us to save considerably more memory. There are, however, still problems to solve. For example, consider the following scenario: we request the allocation of a memory block of 8 bytes, and abmalloc() reuse a block of, say, 1024 bytes. There is clearly a waste.

We will see how to solve this in the next post.

위 내용은 malloc() 및 free() 구현 - 오래된 메모리가 먼저 재사용됨의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

C# vs. C : 역사, 진화 및 미래 전망 C# vs. C : 역사, 진화 및 미래 전망 Apr 19, 2025 am 12:07 AM

C#과 C의 역사와 진화는 독특하며 미래의 전망도 다릅니다. 1.C는 1983 년 Bjarnestroustrup에 의해 발명되어 객체 지향 프로그래밍을 C 언어에 소개했습니다. Evolution 프로세스에는 자동 키워드 소개 및 Lambda Expressions 소개 C 11, C 20 도입 개념 및 코 루틴과 같은 여러 표준화가 포함되며 향후 성능 및 시스템 수준 프로그래밍에 중점을 둘 것입니다. 2.C#은 2000 년 Microsoft에 의해 출시되었으며 C와 Java의 장점을 결합하여 진화는 단순성과 생산성에 중점을 둡니다. 예를 들어, C#2.0은 제네릭과 C#5.0 도입 된 비동기 프로그래밍을 소개했으며, 이는 향후 개발자의 생산성 및 클라우드 컴퓨팅에 중점을 둘 것입니다.

C# vs. C : 학습 곡선 및 개발자 경험 C# vs. C : 학습 곡선 및 개발자 경험 Apr 18, 2025 am 12:13 AM

C# 및 C 및 개발자 경험의 학습 곡선에는 상당한 차이가 있습니다. 1) C#의 학습 곡선은 비교적 평평하며 빠른 개발 및 기업 수준의 응용 프로그램에 적합합니다. 2) C의 학습 곡선은 가파르고 고성능 및 저수준 제어 시나리오에 적합합니다.

C의 정적 분석이란 무엇입니까? C의 정적 분석이란 무엇입니까? Apr 28, 2025 pm 09:09 PM

C에서 정적 분석의 적용에는 주로 메모리 관리 문제 발견, 코드 로직 오류 확인 및 코드 보안 개선이 포함됩니다. 1) 정적 분석은 메모리 누출, 이중 릴리스 및 초기화되지 않은 포인터와 같은 문제를 식별 할 수 있습니다. 2) 사용하지 않은 변수, 데드 코드 및 논리적 모순을 감지 할 수 있습니다. 3) Coverity와 같은 정적 분석 도구는 버퍼 오버플로, 정수 오버플로 및 안전하지 않은 API 호출을 감지하여 코드 보안을 개선 할 수 있습니다.

C 및 XML : 관계와 지원 탐색 C 및 XML : 관계와 지원 탐색 Apr 21, 2025 am 12:02 AM

C는 XML과 타사 라이브러리 (예 : TinyXML, Pugixml, Xerces-C)와 상호 작용합니다. 1) 라이브러리를 사용하여 XML 파일을 구문 분석하고 C- 처리 가능한 데이터 구조로 변환하십시오. 2) XML을 생성 할 때 C 데이터 구조를 XML 형식으로 변환하십시오. 3) 실제 애플리케이션에서 XML은 종종 구성 파일 및 데이터 교환에 사용되어 개발 효율성을 향상시킵니다.

C에서 Chrono 라이브러리를 사용하는 방법? C에서 Chrono 라이브러리를 사용하는 방법? Apr 28, 2025 pm 10:18 PM

C에서 Chrono 라이브러리를 사용하면 시간과 시간 간격을보다 정확하게 제어 할 수 있습니다. 이 도서관의 매력을 탐구합시다. C의 크로노 라이브러리는 표준 라이브러리의 일부로 시간과 시간 간격을 다루는 현대적인 방법을 제공합니다. 시간과 C 시간으로 고통받는 프로그래머에게는 Chrono가 의심 할 여지없이 혜택입니다. 코드의 가독성과 유지 가능성을 향상시킬뿐만 아니라 더 높은 정확도와 유연성을 제공합니다. 기본부터 시작합시다. Chrono 라이브러리에는 주로 다음 주요 구성 요소가 포함됩니다. std :: Chrono :: System_Clock : 현재 시간을 얻는 데 사용되는 시스템 클럭을 나타냅니다. STD :: 크론

C의 미래 : 적응 및 혁신 C의 미래 : 적응 및 혁신 Apr 27, 2025 am 12:25 AM

C의 미래는 병렬 컴퓨팅, 보안, 모듈화 및 AI/기계 학습에 중점을 둘 것입니다. 1) 병렬 컴퓨팅은 코 루틴과 같은 기능을 통해 향상 될 것입니다. 2)보다 엄격한 유형 검사 및 메모리 관리 메커니즘을 통해 보안이 향상 될 것입니다. 3) 변조는 코드 구성 및 편집을 단순화합니다. 4) AI 및 머신 러닝은 C가 수치 컴퓨팅 및 GPU 프로그래밍 지원과 같은 새로운 요구에 적응하도록 촉구합니다.

C : 죽어 가거나 단순히 진화하고 있습니까? C : 죽어 가거나 단순히 진화하고 있습니까? Apr 24, 2025 am 12:13 AM

c is nontdying; it'sevolving.1) c COMINGDUETOITSTIONTIVENICICICICINICE INPERFORMICALEPPLICATION.2) thelugageIscontinuousUllyUpdated, witcentfeatureslikemodulesandCoroutinestoimproveusActionalance.3) despitechallen

C# vs. C : 메모리 관리 및 쓰레기 수집 C# vs. C : 메모리 관리 및 쓰레기 수집 Apr 15, 2025 am 12:16 AM

C#은 자동 쓰레기 수집 메커니즘을 사용하는 반면 C는 수동 메모리 관리를 사용합니다. 1. C#의 쓰레기 수집기는 메모리 누출 위험을 줄이기 위해 메모리를 자동으로 관리하지만 성능 저하로 이어질 수 있습니다. 2.C는 유연한 메모리 제어를 제공하며, 미세 관리가 필요한 애플리케이션에 적합하지만 메모리 누출을 피하기 위해주의해서 처리해야합니다.

See all articles