백엔드 개발 파이썬 튜토리얼 MongoDB 변경 스트림 및 Python을 사용한 실시간 데이터 처리

MongoDB 변경 스트림 및 Python을 사용한 실시간 데이터 처리

Sep 12, 2024 pm 04:15 PM

Real-Time Data Processing with MongoDB Change Streams and Python

소개

MongoDB의 변경 스트림을 사용하면 애플리케이션이 실시간 데이터 변경에 즉시 반응할 수 있습니다. 이 블로그 게시물에서는 이론에 너무 깊이 들어가지 않고도 Python을 사용하여 변경 스트림을 설정하고 사용하는 방법을 보여 드리겠습니다. 먼저 삽입에 초점을 맞춘 다음 이를 다른 이벤트 유형으로 확장하여 데이터베이스 이벤트를 수신하는 간단한 프로그램을 만들어 보겠습니다.

변경 스트림 시작하기

변경 스트림을 사용하면 앱이 삽입이나 업데이트와 같은 특정 데이터베이스 이벤트를 수신하고 즉시 응답할 수 있습니다. 사용자가 자신의 프로필을 업데이트하는 시나리오를 상상해 보세요. 변경 스트림을 사용하면 사용자가 페이지를 새로 고칠 필요 없이 앱 전체에 이 변경 사항을 즉시 반영할 수 있습니다. 이 기능 이전에는 지속적으로 데이터베이스를 폴링하거나 MongoDB Oplog 테일링과 같은 복잡한 방법을 사용해야 했습니다. 변경 스트림은 보다 사용자 친화적인 API를 제공하여 이를 단순화합니다.

변경 스트림 없이는 어떻게 되나요?

인보이스를 업로드하는 API가 있다고 가정해 보겠습니다. 흐름은 고객이 MongoDB에 송장 이미지를 업로드한 다음 AI로 정보를 추출하고 송장을 업데이트하는 것입니다. 송장 업로드 코드의 예는 다음과 같습니다.

from pymongo import MongoClient

class MongoDatabase:
    def __init__(self, config_path: str):
        # Load the YAML configuration file using the provided utility function
        self.config_path = config_path
        self.config = read_config(path=self.config_path)

        # Initialize MongoDB connection
        self.client = MongoClient(self.config['mongodb']['uri'])
        self.db = self.client[self.config['mongodb']['database']]
        self.collection = self.db[self.config['mongodb']['collection']]

    def create_document(self, data: Dict[str, Any]) -> str:
        # Insert a new document and return the automatically generated document ID
        result = self.collection.insert_one(data)
        return str(result.inserted_id)
    def update_document_by_id(self, document_id: str, data: Dict[str, Any]):
        try:
            self.collection.update_one({"_id": document_id}, {"$set": data})
        except PyMongoError as e:
            print(f"Error updating document: {e}")
로그인 후 복사

먼저 만일을 대비해 pymongo를 클래스 안에 포장하겠습니다 :))

@app.post("/api/v1/invoices/upload")
async def upload_invoice(request: Request):
    try:
        # Parse JSON body
        body = await request.json()
        img = body.get("img")
        user_uuid = body.get("user_uuid")

        if not img or not is_base64(img):
            return JSONResponse(
                status_code=status.HTTP_400_BAD_REQUEST,
                content={"status": "error", "message": "Base64 image is required"},
            )

        # Generate invoice UUID
        current_time = datetime.now(timezone.utc)
        img = valid_base64_image(img)       
        invoice_document = {
            "invoice_type": None,
            "created_at": current_time,
            "created_by": user_uuid,
            "last_modified_at": None,
            "last_modified_by": None,
            "status": "not extracted",
            "invoice_image_base64": img,
            "invoice_info": {}
        }

        invoice_uuid = mongo_db.create_document(invoice_document)
        print('Result saved to MongoDB:', invoice_uuid)
        mongo_db.update_document_by_id(invoice_uuid, {"invoice_uuid": invoice_uuid})

        return JSONResponse(
            status_code=status.HTTP_201_CREATED,
            content={"invoice_uuid": invoice_uuid, "message": "Upload successful"}
        )
    except Exception as e:
        # Handle errors
        return JSONResponse(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            content={"status": "error", "message": str(e)}
        )
로그인 후 복사

합리적인 질문은 다음과 같습니다. 업데이트하기 전에 AI 모델이 이미지를 처리할 때까지 기다리지 않으시겠습니까? 문제는 처리하는 데 약 4~5분 정도 소요된다는 점이며, 사용자 경험에 영향을 미치고 싶지 않습니다.

카프카는 어때요?

또 다른 옵션은 Kafka를 사용하는 것입니다. 이미지를 Kafka 주제에 게시하면 다른 서비스가 데이터를 처리할 수 있습니다.

장점:

  • 업로드 및 처리 서비스를 분리합니다.
  • 대규모 실시간 데이터 처리에 효율적입니다.
  • 향상된 사용자 경험: 사용자는 인보이스를 업로드한 후 즉시 응답을 받습니다. 처리는 비동기적으로 처리됩니다.

단점:

  • 더 복잡해졌습니다.
  • Kafka 인프라 설정 및 유지 관리가 필요합니다.
  • 소규모 애플리케이션에는 과잉일 수 있습니다.

다음은 Kafka를 사용하여 송장 업로드 프로세스를 처리하는 방법을 보여주는 기본 구현입니다.

사용자가 API 엔드포인트를 통해 송장을 업로드합니다. 송장 이미지는 MongoDB에 저장되며 추가 처리를 위해 메시지가 Kafka 주제로 전송됩니다.

from kafka import KafkaProducer
import json
from fastapi import FastAPI, Request, status
from fastapi.responses import JSONResponse
from datetime import datetime, timezone

app = FastAPI()

producer = KafkaProducer(
    bootstrap_servers=['localhost:9092'],
    value_serializer=lambda v: json.dumps(v).encode('utf-8')
)

@app.post("/api/v1/invoices/upload")
async def upload_invoice(request: Request):
    try:
        body = await request.json()
        img = body.get("img")
        user_uuid = body.get("user_uuid")

        if not img or not is_base64(img):
            return JSONResponse(
                status_code=status.HTTP_400_BAD_REQUEST,
                content={"status": "error", "message": "Base64 image is required"},
            )

        current_time = datetime.now(timezone.utc)
        img = valid_base64_image(img)       
        invoice_document = {
            "invoice_type": None,
            "created_at": current_time,
            "created_by": user_uuid,
            "status": "not extracted",
            "invoice_image_base64": img,
        }

        # Save the document to MongoDB
        invoice_uuid = mongo_db.create_document(invoice_document)
        mongo_db.update_document_by_id(invoice_uuid, {"invoice_uuid": invoice_uuid})

        # Send a message to Kafka topic
        producer.send('invoice_topic', invoice_document)
        producer.flush()

        return JSONResponse(
            status_code=status.HTTP_201_CREATED,
            content={"message": "Invoice upload received and will be processed"}
        )
    except Exception as e:
        return JSONResponse(
            status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
            content={"status": "error", "message": str(e)}
        )
로그인 후 복사

Kafka 소비자는voice_topic을 듣습니다. 메시지를 받으면 송장을 처리하고(예: 이미지에서 정보 추출) MongoDB에서 해당 문서를 업데이트합니다.

from kafka import KafkaConsumer
import json

consumer = KafkaConsumer(
    'invoice_topic',
    bootstrap_servers=['localhost:9092'],
    value_deserializer=lambda m: json.loads(m.decode('utf-8'))
)

for message in consumer:
    invoice_document = message.value

    # Process the invoice, extract information, and update the document in MongoDB
    invoice_uuid = invoice_document["_id"]
    extracted_data = extract_invoice_data(invoice_document["invoice_image_base64"])

    mongo_db.update_document_by_id(invoice_uuid, {
        "invoice_info": extracted_data, 
        "status": "extracted"
    })

    print(f"Processed and updated invoice: {invoice_uuid}")
로그인 후 복사

흐름 요약:

  1. 인보이스 업로드: 사용자가 API를 통해 인보이스를 업로드합니다.
  2. MongoDB에 저장: 송장 문서가 MongoDB에 저장됩니다.
  3. Kafka로 메시지 보내기: 송장 세부정보가 포함된 메시지가 Kafka 주제(invoice_topic)로 전송됩니다.
  4. Kafka 소비자가 송장을 처리합니다. Kafka 소비자는 Invoice_topic을 듣고 송장을 처리하며 추출된 정보로 MongoDB의 해당 문서를 업데이트합니다.

와, 제가 이걸 직접 썼다니 믿을 수가 없네요! 실제로 관련된 노력을 강조합니다. MongoDB, Kafka, Invoice 서비스라는 세 가지 서비스를 관리하고 구성하는 복잡성도 고려하지 않은 것입니다.

MongoDB 변경 스트림을 사용한 송장 처리

다음은 변경 스트림에 의해 트리거되는 송장 처리를 처리하는 추가 메서드와 기능을 포함하여 MongoDB 변경 스트림을 보여주기 위해 Markdown으로 다시 작성된 전체 코드입니다.

문서 생성 및 변경 스트림 수신과 같은 데이터베이스 작업을 처리하는 MongoDB 래퍼 클래스를 만드는 것부터 시작하겠습니다.

from pymongo import MongoClient
from pymongo.errors import PyMongoError
from typing import Dict, Any
import threading
import yaml

class MongoDatabase:
    # Same code as before #

    def process_invoice(self, invoice_document: Dict[str, Any]):
        """Process the invoice by extracting data and updating the document in MongoDB."""
        try:
            # Simulate extracting information from the invoice image
            extracted_data = extract_invoice_data(invoice_document["invoice_image_base64"])
            invoice_uuid = invoice_document["_id"]

            # Update the invoice document with the extracted data
            self.update_document_by_id(invoice_uuid, {"invoice_info": extracted_data, "status": "extracted"})
            print(f"Processed and updated invoice: {invoice_uuid}")
        except Exception as e:
            print(f"Error processing invoice: {str(e)}")

    def start_change_stream_listener(self):
        """Start listening to the change stream for the collection."""
        def listen():
            try:
                with self.collection.watch() as stream:
                    for change in stream:
                        if change['operationType'] == 'insert':
                            invoice_document = change['fullDocument']
                            print(f"New invoice detected: {invoice_document['_id']}")
                            self.process_invoice(invoice_document)
            except PyMongoError as e:
                print(f"Change stream error: {str(e)}")

        # Start the change stream listener in a separate thread
        listener_thread = threading.Thread(target=listen, daemon=True)
        listener_thread.start()
로그인 후 복사

쉽게 하기 위해 MongoDatabase 클래스 내에 process_invoice를 추가합니다. 하지만 다른 곳에 맡겨야 합니다

업로드 API는 원본과 같아야 합니다.

mongo_db = MongoDatabase(config_path='path_to_your_config.yaml')
mongo_db.start_change_stream_listener()

@app.post("/api/v1/invoices/upload")
async def upload_invoice(request: Request):
    try:
        # Parse JSON body
        body = await request.json() 
        # same code as before
로그인 후 복사

흐름 요약:

  1. 사용자 업로드 송장: 사용자가 API를 통해 송장을 업로드합니다.
  2. MongoDB에 저장: 송장 문서가 MongoDB에 저장됩니다.
  3. MongoDB 변경 스트림 트리거됨: MongoDB 변경 스트림이 새 문서 삽입을 감지합니다.
  4. 송장 처리: 변경 스트림은 송장을 처리하고 추출된 정보로 MongoDB의 문서를 업데이트하는 process_invoice 함수를 트리거합니다.

결론

MongoDB 변경 스트림을 사용하면 데이터베이스의 실시간 변경 사항을 효율적으로 처리할 수 있습니다. 이 예를 확장하면 업데이트 및 삭제와 같은 다양한 이벤트를 처리하여 애플리케이션의 반응성과 반응성을 높일 수 있습니다.

참조:

  • https://www.mongodb.com/developer/언어s/python/python-change-streams/#listen-to-inserts-from-an-application

위 내용은 MongoDB 변경 스트림 및 Python을 사용한 실시간 데이터 처리의 상세 내용입니다. 자세한 내용은 PHP 중국어 웹사이트의 기타 관련 기사를 참조하세요!

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
1 몇 달 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles