백엔드 개발 파이썬 튜토리얼 Python设计模式中单例模式的实现及在Tornado中的应用

Python设计模式中单例模式的实现及在Tornado中的应用

Jun 10, 2016 pm 03:05 PM
python tornado 싱글톤 패턴 디자인 패턴

单例模式的实现方式
将类实例绑定到类变量上

class Singleton(object):
  _instance = None

  def __new__(cls, *args):
    if not isinstance(cls._instance, cls):
      cls._instance = super(Singleton, cls).__new__(cls, *args)
    return cls._instance

로그인 후 복사

但是子类在继承后可以重写__new__以失去单例特性

class D(Singleton):

  def __new__(cls, *args):
    return super(D, cls).__new__(cls, *args)

로그인 후 복사

使用装饰器实现

def singleton(_cls):
  inst = {}

  def getinstance(*args, **kwargs):
    if _cls not in inst:
      inst[_cls] = _cls(*args, **kwargs)
    return inst[_cls]
  return getinstance

@singleton
class MyClass(object):
  pass

로그인 후 복사

问题是这样装饰以后返回的不是类而是函数,当然你可以singleton里定义一个类来解决问题,但这样就显得很麻烦了

使用__metaclass__,这个方式最推荐

class Singleton(type):
  _inst = {}
  
  def __call__(cls, *args, **kwargs):
    if cls not in cls._inst:
      cls._inst[cls] = super(Singleton, cls).__call__(*args)
    return cls._inst[cls]


class MyClass(object):
  __metaclass__ = Singleton

로그인 후 복사


Tornado中的单例模式运用
来看看tornado.IOLoop中的单例模式:

class IOLoop(object):

  @staticmethod
  def instance():
    """Returns a global `IOLoop` instance.

Most applications have a single, global `IOLoop` running on the
main thread. Use this method to get this instance from
another thread. To get the current thread's `IOLoop`, use `current()`.
"""
    if not hasattr(IOLoop, "_instance"):
      with IOLoop._instance_lock:
        if not hasattr(IOLoop, "_instance"):
          # New instance after double check
          IOLoop._instance = IOLoop()
    return IOLoop._instance

로그인 후 복사

为什么这里要double check?来看个这里面简单的单例模式,先来看看代码:

class Singleton(object):

  @staticmathod
  def instance():
    if not hasattr(Singleton, '_instance'):
      Singleton._instance = Singleton()
    return Singleton._instance

로그인 후 복사

在 Python 里,可以在真正的构造函数__new__里做文章:

class Singleton(object):

  def __new__(cls, *args, **kwargs):
    if not hasattr(cls, '_instance'):
      cls._instance = super(Singleton, cls).__new__(cls, *args, **kwargs)
    return cls._instance

로그인 후 복사

这种情况看似还不错,但是不能保证在多线程的环境下仍然好用,看图:

201632180733229.png (683×463)

出现了多线程之后,这明显就是行不通的。

1.上锁使线程同步
上锁后的代码:

import threading

class Singleton(object):

  _instance_lock = threading.Lock()
  
  @staticmethod
  def instance():
    with Singleton._instance_lock:
      if not hasattr(Singleton, '_instance'):
        Singleton._instance = Singleton()
    return Singleton._instance

로그인 후 복사

这里确实是解决了多线程的情况,但是我们只有实例化的时候需要上锁,其它时候Singleton._instance已经存在了,不需要锁了,但是这时候其它要获得Singleton实例的线程还是必须等待,锁的存在明显降低了效率,有性能损耗。

2.全局变量
在 Java/C++ 这些语言里还可以利用全局变量的方式解决上面那种加锁(同步)带来的问题:

class Singleton {

  private static Singleton instance = new Singleton();
  
  private Singleton() {}
  
  public static Singleton getInstance() {
    return instance;
  }
  
}

로그인 후 복사

在 Python 里就是这样了:

class Singleton(object):

  @staticmethod
  def instance():
    return _g_singleton

_g_singleton = Singleton()

# def get_instance():
# return _g_singleton

로그인 후 복사

但是如果这个类所占的资源较多的话,还没有用这个实例就已经存在了,是非常不划算的,Python 代码也略显丑陋……

所以出现了像tornado.IOLoop.instance()那样的double check的单例模式了。在多线程的情况下,既没有同步(加锁)带来的性能下降,也没有全局变量直接实例化带来的资源浪费。

3.装饰器

如果使用装饰器,那么将会是这样:

import functools

def singleton(cls):
  ''' Use class as singleton. '''

  cls.__new_original__ = cls.__new__

  @functools.wraps(cls.__new__)
  def singleton_new(cls, *args, **kw):
    it = cls.__dict__.get('__it__')
    if it is not None:
      return it

    cls.__it__ = it = cls.__new_original__(cls, *args, **kw)
    it.__init_original__(*args, **kw)
    return it

  cls.__new__ = singleton_new
  cls.__init_original__ = cls.__init__
  cls.__init__ = object.__init__

  return cls

#
# Sample use:
#

@singleton
class Foo:
  def __new__(cls):
    cls.x = 10
    return object.__new__(cls)

  def __init__(self):
    assert self.x == 10
    self.x = 15

assert Foo().x == 15
Foo().x = 20
assert Foo().x == 20

로그인 후 복사

def singleton(cls):
  instance = cls()
  instance.__call__ = lambda: instance
  return instance

#
# Sample use
#

@singleton
class Highlander:
  x = 100
  # Of course you can have any attributes or methods you like.

Highlander() is Highlander() is Highlander #=> True
id(Highlander()) == id(Highlander) #=> True
Highlander().x == Highlander.x == 100 #=> True
Highlander.x = 50
Highlander().x == Highlander.x == 50 #=> True
로그인 후 복사
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP와 Python : 다른 패러다임이 설명되었습니다 PHP와 Python : 다른 패러다임이 설명되었습니다 Apr 18, 2025 am 12:26 AM

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP와 Python 중에서 선택 : 가이드 PHP와 Python 중에서 선택 : 가이드 Apr 18, 2025 am 12:24 AM

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

숭고한 코드 파이썬을 실행하는 방법 숭고한 코드 파이썬을 실행하는 방법 Apr 16, 2025 am 08:48 AM

Sublime 텍스트로 Python 코드를 실행하려면 먼저 Python 플러그인을 설치 한 다음 .py 파일을 작성하고 코드를 작성한 다음 CTRL B를 눌러 코드를 실행하면 콘솔에 출력이 표시됩니다.

PHP와 Python : 그들의 역사에 깊은 다이빙 PHP와 Python : 그들의 역사에 깊은 다이빙 Apr 18, 2025 am 12:25 AM

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

Python vs. JavaScript : 학습 곡선 및 사용 편의성 Python vs. JavaScript : 학습 곡선 및 사용 편의성 Apr 16, 2025 am 12:12 AM

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Golang vs. Python : 성능 및 확장 성 Golang vs. Python : 성능 및 확장 성 Apr 19, 2025 am 12:18 AM

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

vscode에서 코드를 작성하는 위치 vscode에서 코드를 작성하는 위치 Apr 15, 2025 pm 09:54 PM

Visual Studio Code (VSCODE)에서 코드를 작성하는 것은 간단하고 사용하기 쉽습니다. vscode를 설치하고, 프로젝트를 만들고, 언어를 선택하고, 파일을 만들고, 코드를 작성하고, 저장하고 실행합니다. VSCODE의 장점에는 크로스 플랫폼, 무료 및 오픈 소스, 강력한 기능, 풍부한 확장 및 경량 및 빠른가 포함됩니다.

메모장으로 파이썬을 실행하는 방법 메모장으로 파이썬을 실행하는 방법 Apr 16, 2025 pm 07:33 PM

메모장에서 Python 코드를 실행하려면 Python 실행 파일 및 NPPEXEC 플러그인을 설치해야합니다. Python을 설치하고 경로를 추가 한 후 nppexec 플러그인의 명령 "Python"및 매개 변수 "{current_directory} {file_name}"을 구성하여 Notepad의 단축키 "F6"을 통해 Python 코드를 실행하십시오.

See all articles