用Python编写简单的微博爬虫
先说点题外话,我一开始想使用Sina Weibo API来获取微博内容,但后来发现新浪微博的API限制实在太多,大家感受一下:
只能获取当前授权的用户(就是自己),而且只能返回最新的5条,WTF!
所以果断放弃掉这条路,改为『生爬』,因为PC端的微博是Ajax的动态加载,爬取起来有些困难,我果断知难而退,改为对移动端的微博进行爬取,因为移动端的微博可以通过分页爬取的方式来一次性爬取所有微博内容,这样工作就简化了不少。
最后实现的功能:
1、输入要爬取的微博用户的user_id,获得该用户的所有微博
2、文字内容保存到以%user_id命名文本文件中,所有高清原图保存在weibo_image文件夹中
具体操作:
首先我们要获得自己的cookie,这里只说chrome的获取方法。
1、用chrome打开新浪微博移动端
2、option+command+i调出开发者工具
3、点开Network,将Preserve log选项选中
4、输入账号密码,登录新浪微博
5、找到m.weibo.cn->Headers->Cookie,把cookie复制到代码中的#your cookie处
然后再获取你想爬取的用户的user_id,这个我不用多说啥了吧,点开用户主页,地址栏里面那个号码就是user_id
将python代码保存到weibo_spider.py文件中
定位到当前目录下后,命令行执行python weibo_spider.py user_id
当然如果你忘记在后面加user_id,执行的时候命令行也会提示你输入
最后执行结束
小问题:在我的测试中,有的时候会出现图片下载失败的问题,具体原因还不是很清楚,可能是网速问题,因为我宿舍的网速实在太不稳定了,当然也有可能是别的问题,所以在程序根目录下面,我还生成了一个userid_imageurls的文本文件,里面存储了爬取的所有图片的下载链接,如果出现大片的图片下载失败,可以将该链接群一股脑导进迅雷等下载工具进行下载。
另外,我的系统是OSX EI Capitan10.11.2,Python的版本是2.7,依赖库用sudo pip install XXXX就可以安装,具体配置问题可以自行stackoverflow,这里就不展开讲了。
下面我就给出实现代码
#-*-coding:utf8-*- import re import string import sys import os import urllib import urllib2 from bs4 import BeautifulSoup import requests from lxml import etree reload(sys) sys.setdefaultencoding('utf-8') if(len(sys.argv)>=2): user_id = (int)(sys.argv[1]) else: user_id = (int)(raw_input(u"请输入user_id: ")) cookie = {"Cookie": "#your cookie"} url = 'http://weibo.cn/u/%d?filter=1&page=1'%user_id html = requests.get(url, cookies = cookie).content selector = etree.HTML(html) pageNum = (int)(selector.xpath('//input[@name="mp"]')[0].attrib['value']) result = "" urllist_set = set() word_count = 1 image_count = 1 print u'爬虫准备就绪...' for page in range(1,pageNum+1): #获取lxml页面 url = 'http://weibo.cn/u/%d?filter=1&page=%d'%(user_id,page) lxml = requests.get(url, cookies = cookie).content #文字爬取 selector = etree.HTML(lxml) content = selector.xpath('//span[@class="ctt"]') for each in content: text = each.xpath('string(.)') if word_count>=4: text = "%d :"%(word_count-3) +text+"\n\n" else : text = text+"\n\n" result = result + text word_count += 1 #图片爬取 soup = BeautifulSoup(lxml, "lxml") urllist = soup.find_all('a',href=re.compile(r'^http://weibo.cn/mblog/oripic',re.I)) first = 0 for imgurl in urllist: urllist_set.add(requests.get(imgurl['href'], cookies = cookie).url) image_count +=1 fo = open("/Users/Personals/%s"%user_id, "wb") fo.write(result) word_path=os.getcwd()+'/%d'%user_id print u'文字微博爬取完毕' link = "" fo2 = open("/Users/Personals/%s_imageurls"%user_id, "wb") for eachlink in urllist_set: link = link + eachlink +"\n" fo2.write(link) print u'图片链接爬取完毕' if not urllist_set: print u'该页面中不存在图片' else: #下载图片,保存在当前目录的pythonimg文件夹下 image_path=os.getcwd()+'/weibo_image' if os.path.exists(image_path) is False: os.mkdir(image_path) x=1 for imgurl in urllist_set: temp= image_path + '/%s.jpg' % x print u'正在下载第%s张图片' % x try: urllib.urlretrieve(urllib2.urlopen(imgurl).geturl(),temp) except: print u"该图片下载失败:%s"%imgurl x+=1 print u'原创微博爬取完毕,共%d条,保存路径%s'%(word_count-4,word_path) print u'微博图片爬取完毕,共%d张,保存路径%s'%(image_count-1,image_path)
一个简单的微博爬虫就完成了,希望对大家的学习有所帮助。

핫 AI 도구

Undresser.AI Undress
사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover
사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool
무료로 이미지를 벗다

Clothoff.io
AI 옷 제거제

Video Face Swap
완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

뜨거운 도구

메모장++7.3.1
사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전
중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기
강력한 PHP 통합 개발 환경

드림위버 CS6
시각적 웹 개발 도구

SublimeText3 Mac 버전
신 수준의 코드 편집 소프트웨어(SublimeText3)

PHP는 주로 절차 적 프로그래밍이지만 객체 지향 프로그래밍 (OOP)도 지원합니다. Python은 OOP, 기능 및 절차 프로그래밍을 포함한 다양한 패러다임을 지원합니다. PHP는 웹 개발에 적합하며 Python은 데이터 분석 및 기계 학습과 같은 다양한 응용 프로그램에 적합합니다.

PHP는 웹 개발 및 빠른 프로토 타이핑에 적합하며 Python은 데이터 과학 및 기계 학습에 적합합니다. 1.PHP는 간단한 구문과 함께 동적 웹 개발에 사용되며 빠른 개발에 적합합니다. 2. Python은 간결한 구문을 가지고 있으며 여러 분야에 적합하며 강력한 라이브러리 생태계가 있습니다.

Sublime 텍스트로 Python 코드를 실행하려면 먼저 Python 플러그인을 설치 한 다음 .py 파일을 작성하고 코드를 작성한 다음 CTRL B를 눌러 코드를 실행하면 콘솔에 출력이 표시됩니다.

PHP는 1994 년에 시작되었으며 Rasmuslerdorf에 의해 개발되었습니다. 원래 웹 사이트 방문자를 추적하는 데 사용되었으며 점차 서버 측 스크립팅 언어로 진화했으며 웹 개발에 널리 사용되었습니다. Python은 1980 년대 후반 Guidovan Rossum에 의해 개발되었으며 1991 년에 처음 출시되었습니다. 코드 가독성과 단순성을 강조하며 과학 컴퓨팅, 데이터 분석 및 기타 분야에 적합합니다.

Python은 부드러운 학습 곡선과 간결한 구문으로 초보자에게 더 적합합니다. JavaScript는 가파른 학습 곡선과 유연한 구문으로 프론트 엔드 개발에 적합합니다. 1. Python Syntax는 직관적이며 데이터 과학 및 백엔드 개발에 적합합니다. 2. JavaScript는 유연하며 프론트 엔드 및 서버 측 프로그래밍에서 널리 사용됩니다.

Golang은 성능과 확장 성 측면에서 Python보다 낫습니다. 1) Golang의 컴파일 유형 특성과 효율적인 동시성 모델은 높은 동시성 시나리오에서 잘 수행합니다. 2) 해석 된 언어로서 파이썬은 천천히 실행되지만 Cython과 같은 도구를 통해 성능을 최적화 할 수 있습니다.

Visual Studio Code (VSCODE)에서 코드를 작성하는 것은 간단하고 사용하기 쉽습니다. vscode를 설치하고, 프로젝트를 만들고, 언어를 선택하고, 파일을 만들고, 코드를 작성하고, 저장하고 실행합니다. VSCODE의 장점에는 크로스 플랫폼, 무료 및 오픈 소스, 강력한 기능, 풍부한 확장 및 경량 및 빠른가 포함됩니다.

메모장에서 Python 코드를 실행하려면 Python 실행 파일 및 NPPEXEC 플러그인을 설치해야합니다. Python을 설치하고 경로를 추가 한 후 nppexec 플러그인의 명령 "Python"및 매개 변수 "{current_directory} {file_name}"을 구성하여 Notepad의 단축키 "F6"을 통해 Python 코드를 실행하십시오.
