백엔드 개발 파이썬 튜토리얼 Python装饰器基础详解

Python装饰器基础详解

Jun 10, 2016 pm 03:05 PM

装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。

前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法。

什么是装饰器

装饰是为函数和类指定管理代码的一种方式。Python装饰器以两种形式呈现:

【1】函数装饰器在函数定义的时候进行名称重绑定,提供一个逻辑层来管理函数和方法或随后对它们的调用。

【2】类装饰器在类定义的时候进行名称重绑定,提供一个逻辑层来管理类,或管理随后调用它们所创建的实例。

简而言之,装饰器提供了一种方法,在函数和类定义语句的末尾插入自动运行的代码——对于函数装饰器,在def的末尾;对于类装饰器,在class的末尾。这样的代码可以扮演不同的角色。
装饰器提供了一些和代码维护性和审美相关的有点。此外,作为结构化工具,装饰器自然地促进了代码封装,这减少了冗余性并使得未来变得更容易。

函数装饰器

通过在一个函数的def语句的末尾运行另一个函数,把最初的函数名重新绑定到结果。

用法

装饰器在紧挨着定义一个函数或方法的def语句之前的一行编写,并且它由@符号以及紧随其后的对于元函数的一个引用组成——这是管理另一个函数的一个函数(或其他可调用对象)。
在编码上,函数装饰器自动将如下语法:

@decorator 
def F(arg): 
... 
F(99)
로그인 후 복사

映射为这个对等形式:

def F(arg): 
... 
F = decorator(F) 
F(99)
로그인 후 복사

这里的装饰器是一个单参数的可调用对象,它返回与F具有相同数目的参数的一个可调用对象。
当随后调用F函数的时候,它自动调用装饰器所返回的对象。

换句话说,装饰实际把如下的第一行映射为第二行(尽管装饰器只在装饰的时候运行一次)

fun(6,7) 
decorator(func)(6,7) 
로그인 후 복사

这一自动名称重绑定也解释了之前介绍的静态方法和property装饰器语法的原因:

class C: 
@staticmethod 
def meth(...):... 
@property 
def name(self):...
로그인 후 복사

实现

装饰器自身是返回可调用对象的可调用对象。实际上,它可以是任意类型的可调用对象,并且返回任意类型的可调用对象:函数和类的任何组合都可以使用,尽管一些组合更适合于特定的背景。

有一种常用的编码模式——装饰器返回了一个包装器,包装器把最初的函数保持到一个封闭的作用域中:

def decorator(F): 
def wrapper(*args): 
# 使用 F 和 *args 
# 调用原来的F(*args) 
return wrapper 
@decorator 
def func(x,y): 
... 
func(6,7)
로그인 후 복사

当随后调用名称func的时候,它确实调用装饰器所返回的包装器函数;随后包装器函数可能运行最初的func,因为它在一个封闭的作用域中仍然可以使用。

为了对类做同样的事情,我们可以重载调用操作:

class decorator: 
def __init__(self,func): 
self.func = func 
def __call__(self,*args): 
# 使用self.func和args 
# self.func(*args)调用最初的func 
@decorator 
def func(x,y): 
... 
func(6,7)
로그인 후 복사

但是,要注意的是,基于类的代码中,它对于拦截简单函数有效,但当它应用于类方法函数时,并不很有效:
如下反例:

class decorator: 
def __init__(self,func): 
self.func = func 
def __call__(self,*args): 
# 调用self.func(*args)失败,因为C实例参数无法传递 
class C: 
@decorator 
def method(self,x,y): 
...
로그인 후 복사

这时候装饰的方法重绑定到一个类的方法上,而不是一个简单的函数,这一点带来的问题是,当装饰器的方法__call__随后运行的时候,其中的self接受装饰器类实例,并且类C的实例不会包含到一个*args中。

这时候,嵌套函数的替代方法工作得更好:

def decorator: 
def warpper(*args): 
# ... 
return wrapper 
@decorator 
def func(x,y): 
... 
func(6,7) 
class C: 
@decorator 
def method(self,x,y): 
... 
x = C() 
x.method(6,7)
로그인 후 복사

类装饰器

类装饰器与函数装饰器使用相同的语法和非常相似的编码方式。类装饰器是管理类的一种方式,或者用管理或扩展类所创建的实例的额外逻辑,来包装实例构建调用。

用法

假设类装饰器返回一个可调用对象的一个单参数的函数,类装饰器的语法为:

@decorator 
class C: 
... 
x = C(99)
로그인 후 복사

等同于下面的语法:

class C: 
... 
C = decorator(C) 
x = C(99)
로그인 후 복사

直接效果是随后调用类名会创建一个实例,该实例会触发装饰器所返回的可调用对象,而不是调用最初的类自身。

实现

类装饰器返回的可调用对象,通常创建并返回最初的类的一个新的实例,以某种方式来扩展对其接口的管理。例如,下面的实例插入一个对象来拦截一个类实例的未定义的属性:

def decorator(cls): 
class Wrapper: 
def __init__(self,*args): 
self.wrapped = cls(*args) 
def __getattr__(self,name): 
return getattr(self.wrapped,name) 
return Wrapper 
@decorator 
class C: # C = decorator(C) 
def __init__(self,x,y): # Run by Wrapper.__init__ 
self.attr = 'spam' 
x = C(6,7) # 等价于Wrapper(6,7) 
print(x.attr)
로그인 후 복사

在这个例子中,装饰器把类的名称重新绑定到另一个类,这个类在一个封闭的作用域中保持了最初的类。

就像函数装饰器一样,类装饰器通常可以编写为一个创建并返回可调用对象的“工厂”函数。

装饰器嵌套

有时候,一个装饰器不够,装饰器语法允许我们向一个装饰器的函数或方法添加包装器逻辑的多个层。这种形式的装饰器的语法为:

@A 
@B 
@C 
def f(...): 
...
로그인 후 복사

如下这样转换:

def f(...): 
... 
f = A(B(C(f))) 
로그인 후 복사

这里,最初的函数通过3个不同的装饰器传递,每个装饰器处理前一个结果。

装饰器参数

函数装饰器和类装饰器都能接受参数,如下:

@decorator(A,B) 
def F(arg): 
... 
F(99)
로그인 후 복사

自动映射到其对等形式:

def F(arg): 
... 
F = decorator(A,B)(F) 
F(99)
로그인 후 복사

装饰器参数在装饰之前就解析了,并且它们通常用来保持状态信息供随后的调用使用。例如,这个例子中的装饰器函数,可能采用如下形式:

def decorator(A,B): 
# 保存或使用A和B 
def actualDecorator(F): 
# 保存或使用函数 F 
# 返回一个可调用对象 
return callable 
return actualDecorator
로그인 후 복사

以上,这是装饰器的基础知识,接下来将学习编写自己的装饰器。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

Python vs. C : 학습 곡선 및 사용 편의성 Python vs. C : 학습 곡선 및 사용 편의성 Apr 19, 2025 am 12:20 AM

Python은 배우고 사용하기 쉽고 C는 더 강력하지만 복잡합니다. 1. Python Syntax는 간결하며 초보자에게 적합합니다. 동적 타이핑 및 자동 메모리 관리를 사용하면 사용하기 쉽지만 런타임 오류가 발생할 수 있습니다. 2.C는 고성능 응용 프로그램에 적합한 저수준 제어 및 고급 기능을 제공하지만 학습 임계 값이 높고 수동 메모리 및 유형 안전 관리가 필요합니다.

Python 학습 : 2 시간의 일일 연구가 충분합니까? Python 학습 : 2 시간의 일일 연구가 충분합니까? Apr 18, 2025 am 12:22 AM

하루에 2 시간 동안 파이썬을 배우는 것으로 충분합니까? 목표와 학습 방법에 따라 다릅니다. 1) 명확한 학습 계획을 개발, 2) 적절한 학습 자원 및 방법을 선택하고 3) 실습 연습 및 검토 및 통합 연습 및 검토 및 통합,이 기간 동안 Python의 기본 지식과 고급 기능을 점차적으로 마스터 할 수 있습니다.

Python vs. C : 성능과 효율성 탐색 Python vs. C : 성능과 효율성 탐색 Apr 18, 2025 am 12:20 AM

Python은 개발 효율에서 C보다 낫지 만 C는 실행 성능이 높습니다. 1. Python의 간결한 구문 및 풍부한 라이브러리는 개발 효율성을 향상시킵니다. 2.C의 컴파일 유형 특성 및 하드웨어 제어는 실행 성능을 향상시킵니다. 선택할 때는 프로젝트 요구에 따라 개발 속도 및 실행 효율성을 평가해야합니다.

Python vs. C : 주요 차이점 이해 Python vs. C : 주요 차이점 이해 Apr 21, 2025 am 12:18 AM

Python과 C는 각각 고유 한 장점이 있으며 선택은 프로젝트 요구 사항을 기반으로해야합니다. 1) Python은 간결한 구문 및 동적 타이핑으로 인해 빠른 개발 및 데이터 처리에 적합합니다. 2) C는 정적 타이핑 및 수동 메모리 관리로 인해 고성능 및 시스템 프로그래밍에 적합합니다.

Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Python Standard Library의 일부는 무엇입니까? 목록 또는 배열은 무엇입니까? Apr 27, 2025 am 12:03 AM

Pythonlistsarepartoftsandardlardlibrary, whileraysarenot.listsarebuilt-in, 다재다능하고, 수집 할 수있는 반면, arraysarreprovidedByTearRaymoduledlesscommonlyusedDuetolimitedFunctionality.

파이썬 : 자동화, 스크립팅 및 작업 관리 파이썬 : 자동화, 스크립팅 및 작업 관리 Apr 16, 2025 am 12:14 AM

파이썬은 자동화, 스크립팅 및 작업 관리가 탁월합니다. 1) 자동화 : 파일 백업은 OS 및 Shutil과 같은 표준 라이브러리를 통해 실현됩니다. 2) 스크립트 쓰기 : PSUTIL 라이브러리를 사용하여 시스템 리소스를 모니터링합니다. 3) 작업 관리 : 일정 라이브러리를 사용하여 작업을 예약하십시오. Python의 사용 편의성과 풍부한 라이브러리 지원으로 인해 이러한 영역에서 선호하는 도구가됩니다.

과학 컴퓨팅을위한 파이썬 : 상세한 모양 과학 컴퓨팅을위한 파이썬 : 상세한 모양 Apr 19, 2025 am 12:15 AM

과학 컴퓨팅에서 Python의 응용 프로그램에는 데이터 분석, 머신 러닝, 수치 시뮬레이션 및 시각화가 포함됩니다. 1.numpy는 효율적인 다차원 배열 및 수학적 함수를 제공합니다. 2. Scipy는 Numpy 기능을 확장하고 최적화 및 선형 대수 도구를 제공합니다. 3. 팬더는 데이터 처리 및 분석에 사용됩니다. 4. matplotlib는 다양한 그래프와 시각적 결과를 생성하는 데 사용됩니다.

웹 개발을위한 파이썬 : 주요 응용 프로그램 웹 개발을위한 파이썬 : 주요 응용 프로그램 Apr 18, 2025 am 12:20 AM

웹 개발에서 Python의 주요 응용 프로그램에는 Django 및 Flask 프레임 워크 사용, API 개발, 데이터 분석 및 시각화, 머신 러닝 및 AI 및 성능 최적화가 포함됩니다. 1. Django 및 Flask 프레임 워크 : Django는 복잡한 응용 분야의 빠른 개발에 적합하며 플라스크는 소형 또는 고도로 맞춤형 프로젝트에 적합합니다. 2. API 개발 : Flask 또는 DjangorestFramework를 사용하여 RESTFULAPI를 구축하십시오. 3. 데이터 분석 및 시각화 : Python을 사용하여 데이터를 처리하고 웹 인터페이스를 통해 표시합니다. 4. 머신 러닝 및 AI : 파이썬은 지능형 웹 애플리케이션을 구축하는 데 사용됩니다. 5. 성능 최적화 : 비동기 프로그래밍, 캐싱 및 코드를 통해 최적화

See all articles