데이터 베이스 MySQL 튜토리얼 10053事件分析案例一则

10053事件分析案例一则

Jun 07, 2016 pm 03:54 PM
일관된 이벤트 분석하다 데이터 사례 시험

测试库两张表,数据一致,(表有复合主键A+B),但同样执行DELETE TABLE FROM T1/T2 WHERE A=1 AND ROWNUM100;时,T1表删除时间非常长,T2表删除时间很快。在PLSQL中或sqlplus中查看执行计划都是一样的,表示都用到了索引范围扫描。 PLAN_TABLE_OUTPUT -------

测试库两张表,数据一致,(表有复合主键A+B),但同样执行DELETE TABLE FROM T1/T2 WHERE A='1' AND ROWNUM

PLAN_TABLE_OUTPUT
-----------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost |
-----------------------------------------------------------------------
| 0 | DELETE STATEMENT | | 1000 | 12000 | 3217 |
| 1 | DELETE | T1 | | | |
|* 2 | COUNT STOPKEY | | | | |
|* 3 | INDEX RANGE SCAN | IDX_T1 | 420K| 4931K| 3217 |
-----------------------------------------------------------------------
Predicate Information (identified by operation id):
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
2 - filter(ROWNUM 3 - access("T1"."A"='1')
Note: cpu costing is off

PLAN_TABLE_OUTPUT
--------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost |
--------------------------------------------------------------------
| 0 | DELETE STATEMENT | | 1000 | 12000 | 2965 |
| 1 | DELETE | T2 | | | |
|* 2 | COUNT STOPKEY | | | | |
|* 3 | INDEX RANGE SCAN | IDX_T2 | 393K| 4607K| 2965 |
--------------------------------------------------------------------
Predicate Information (identified by operation id):
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
2 - filter(ROWNUM 3 - access("T2"."A"='1')
Note: cpu costing is off

显然感觉这两个表的实际操作和执行计划不太相符,这时10053事件就起到了作用。

10053介绍:

10053 事件是oracle 提供的用于跟踪sql 语句成本计算的内部事件,它能记载CBO 模式下oracle 优化器如何计算sql 成本,生成相应的执行计划。 用来描述oracle如何选择执行计划的过程,然后输出到trace文件里,因为我们经常看执行计划怎么执行的消耗了哪些资源,而不是常看执行计划怎么选择出来了的。

10053特点:

(1) 只可以了解oracle执行计划的选择过程

(2) 无法获知代价的计算公式,因为这是oracle内部的商业机密,而且每个oracle版本的优化器计算公式都不相同差距还是蛮大的,不同版本的同一个语句的代价也不一样,优化器现在还不是很成熟,还有待完善。

(3) 在这个里面我们重点要了解的是“代价”是如何计算出来的,然后我们才能了解执行计划是如何选择的。

(4) 在10053中可以了解哪些因素影响sql的执行代价

(5) oracle 8i cost等价IO资源消耗 9i以后cost等价IO+CPU+网络+等待事件+其他代价

T1表的10053事件信息:

***************************************

BASE STATISTICAL INFORMATION
***********************
Table stats Table: T1 Alias: T1 来自user_tables视图
TOTAL :: CDN: 2341358 NBLKS: 13921 AVG_ROW_LEN: 40
-- Index stats 来自user_indexes视图
INDEX NAME: IDX_STAROTHER COL#: 2 3
TOTAL :: LVLS: 2 #LB: 13609 #DK: 2156054 LB/K: 1 DB/K: 1 CLUF: 165252
_OPTIMIZER_PERCENT_PARALLEL = 0
***************************************
SINGLE TABLE ACCESS PATH
Column: AIRLINE_CO Col#: 2 Table: T1 Alias: T1
NDV: 7 NULLS: 0 DENS: 1.4286e-01
NO HISTOGRAM: #BKT: 1 #VAL: 2
TABLE: STAROTHERPRF ORIG CDN: 2341358 ROUNDED CDN: 334480 CMPTD CDN: 334480
Access path: tsc Resc: 1340 Resp: 1340 全表扫描代价(1340),这里tsc我想应该是TableScan的缩写
Skip scan: ss-sel 0 andv 308008
ss cost 308008 索引跳跃扫描的代价(1945)
index io scan cost 1945
Access path: index (index-only) 索引(范围)扫描代价(1947)
Index: IDX_T1
TABLE: T1
RSC_CPU: 0 RSC_IO: 1947
IX_SEL: 1.4286e-01 TB_SEL: 1.4286e-01

BEST_CST: 1340.00 PATH: 2 Degree: 1 最佳代价是1340,即全表扫描

对应的执行计划:

***************************************
GENERAL PLANS
***********************
Join order[1]: STAROTHERPRF[STAROTHERPRF]#0
Best so far: TABLE#: 0 CST: 1340 CDN: 334480 BYTES: 4348240
Final - All Rows Plan:
JOIN ORDER: 1
CST: 1340 CDN: 334480 RSC: 1340 RSP: 1340 BYTES: 4348240
IO-RSC: 1340 IO-RSP: 1340 CPU-RSC: 0 CPU-RSP: 0
QUERY
explain plan for delete from starotherprf WHERE AIRLINE_CODE = 'US' AND ROWNUM PLAN
Cost of plan: 1340
Operation...........Object name.....Options.........Id...Pid..
DELETE STATEMENT 0
DELETE STAROTHERPRF 1
COUNT STOPKEY 2 1
TABLE ACCESS T1 FULL 3 2
QUERY

显示用的就是全表扫描

T2表的10053事件信息:

***************************************

SINGLE TABLE ACCESS PATH
Column: AIRLINE_CO Col#: 1 Table: T2 Alias: T2
NDV: 19 NULLS: 0 DENS: 5.2632e-02
NO HISTOGRAM: #BKT: 1 #VAL: 2
TABLE: CASTARPRF ORIG CDN: 6665065 ROUNDED CDN: 350793 CMPTD CDN: 350793
Access path: tsc Resc: 4275 Resp: 4275 全表扫描代价(4275)
Skip scan: ss-sel 0 andv 413617 索引跳跃扫描代价(413617)
ss cost 413617
index io scan cost 1973
Access path: index (index-only) 索引(范围)扫描代价(1975)
Index: IDX_T2
TABLE: T2
RSC_CPU: 0 RSC_IO: 1975
IX_SEL: 5.2632e-02 TB_SEL: 5.2632e-02
BEST_CST: 1975.00 PATH: 4 Degree: 1 最佳代价是1975,即索引扫描

对应的执行计划:

***************************************
GENERAL PLANS
***********************
Join order[1]: CASTARPRF[CASTARPRF]#0
Best so far: TABLE#: 0 CST: 1975 CDN: 350793 BYTES: 4911102
prefetching is on for IDX_CASTAR
Final - All Rows Plan:
JOIN ORDER: 1
CST: 1975 CDN: 350793 RSC: 1975 RSP: 1975 BYTES: 4911102
IO-RSC: 1975 IO-RSP: 1975 CPU-RSC: 0 CPU-RSP: 0
QUERY
explain plan for delete from castarprf WHERE AIRLINE_CODE = 'US' AND ROWNUM PLAN
Cost of plan: 1975
Operation...........Object name.....Options.........Id...Pid..
DELETE STATEMENT 0
DELETE CASTARPRF 1
COUNT STOPKEY 2 1
INDEX IDX_T2 RANGE SCAN 3 2
QUERY

显示用的就是索引扫描

现在就可以知道为什么这两张表删除时间不同了,原因就是T1表CBO选择了错误的执行计划,导致全表扫描,因此百万级的数据就会耗费更长的时间。

总结:当感觉SQL语句执行时走的是错误的执行计划,而又找不到原因时,这时请用10053来分析一下原因。这就是10053的适用场景。

본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.

핫 AI 도구

Undresser.AI Undress

Undresser.AI Undress

사실적인 누드 사진을 만들기 위한 AI 기반 앱

AI Clothes Remover

AI Clothes Remover

사진에서 옷을 제거하는 온라인 AI 도구입니다.

Undress AI Tool

Undress AI Tool

무료로 이미지를 벗다

Clothoff.io

Clothoff.io

AI 옷 제거제

Video Face Swap

Video Face Swap

완전히 무료인 AI 얼굴 교환 도구를 사용하여 모든 비디오의 얼굴을 쉽게 바꾸세요!

인기 기사

<gum> : Bubble Gum Simulator Infinity- 로얄 키를 얻고 사용하는 방법
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Nordhold : Fusion System, 설명
4 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora : 마녀 트리의 속삭임 - Grappling Hook 잠금 해제 방법
3 몇 주 전 By 尊渡假赌尊渡假赌尊渡假赌

뜨거운 도구

메모장++7.3.1

메모장++7.3.1

사용하기 쉬운 무료 코드 편집기

SublimeText3 중국어 버전

SublimeText3 중국어 버전

중국어 버전, 사용하기 매우 쉽습니다.

스튜디오 13.0.1 보내기

스튜디오 13.0.1 보내기

강력한 PHP 통합 개발 환경

드림위버 CS6

드림위버 CS6

시각적 웹 개발 도구

SublimeText3 Mac 버전

SublimeText3 Mac 버전

신 수준의 코드 편집 소프트웨어(SublimeText3)

ddrescue를 사용하여 Linux에서 데이터 복구 ddrescue를 사용하여 Linux에서 데이터 복구 Mar 20, 2024 pm 01:37 PM

DDREASE는 하드 드라이브, SSD, RAM 디스크, CD, DVD 및 USB 저장 장치와 같은 파일 또는 블록 장치에서 데이터를 복구하기 위한 도구입니다. 한 블록 장치에서 다른 블록 장치로 데이터를 복사하여 손상된 데이터 블록은 남겨두고 양호한 데이터 블록만 이동합니다. ddreasue는 복구 작업 중에 간섭이 필요하지 않으므로 완전히 자동화된 강력한 복구 도구입니다. 게다가 ddasue 맵 파일 덕분에 언제든지 중지하고 다시 시작할 수 있습니다. DDREASE의 다른 주요 기능은 다음과 같습니다. 복구된 데이터를 덮어쓰지 않지만 반복 복구 시 공백을 채웁니다. 그러나 도구에 명시적으로 지시된 경우에는 잘릴 수 있습니다. 여러 파일이나 블록의 데이터를 단일 파일로 복구

오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! 오픈 소스! ZoeDepth를 넘어! DepthFM: 빠르고 정확한 단안 깊이 추정! Apr 03, 2024 pm 12:04 PM

0. 이 글은 어떤 내용을 담고 있나요? 우리는 다재다능하고 빠른 최첨단 생성 단안 깊이 추정 모델인 DepthFM을 제안합니다. DepthFM은 전통적인 깊이 추정 작업 외에도 깊이 인페인팅과 같은 다운스트림 작업에서 최첨단 기능을 보여줍니다. DepthFM은 효율적이며 몇 가지 추론 단계 내에서 깊이 맵을 합성할 수 있습니다. 이 작품을 함께 읽어보아요~ 1. 논문 정보 제목: DepthFM: FastMoncularDepthEstimationwithFlowMatching 저자: MingGui, JohannesS.Fischer, UlrichPrestel, PingchuanMa, Dmytr

Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Google은 열광하고 있습니다. JAX 성능이 Pytorch와 TensorFlow를 능가합니다! GPU 추론 훈련을 위한 가장 빠른 선택이 될 수 있습니다. Apr 01, 2024 pm 07:46 PM

Google이 추진하는 JAX의 성능은 최근 벤치마크 테스트에서 Pytorch와 TensorFlow를 능가하여 7개 지표에서 1위를 차지했습니다. 그리고 JAX 성능이 가장 좋은 TPU에서는 테스트가 이루어지지 않았습니다. 개발자들 사이에서는 여전히 Tensorflow보다 Pytorch가 더 인기가 있습니다. 그러나 앞으로는 더 큰 모델이 JAX 플랫폼을 기반으로 훈련되고 실행될 것입니다. 모델 최근 Keras 팀은 기본 PyTorch 구현을 사용하여 세 가지 백엔드(TensorFlow, JAX, PyTorch)와 TensorFlow를 사용하는 Keras2를 벤치마킹했습니다. 첫째, 그들은 주류 세트를 선택합니다.

iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 iPhone의 느린 셀룰러 데이터 인터넷 속도: 수정 사항 May 03, 2024 pm 09:01 PM

지연이 발생하고 iPhone의 모바일 데이터 연결 속도가 느립니까? 일반적으로 휴대폰의 셀룰러 인터넷 강도는 지역, 셀룰러 네트워크 유형, 로밍 유형 등과 같은 여러 요소에 따라 달라집니다. 더 빠르고 안정적인 셀룰러 인터넷 연결을 얻기 위해 할 수 있는 일이 몇 가지 있습니다. 수정 1 – iPhone 강제 다시 시작 때로는 장치를 강제로 다시 시작하면 셀룰러 연결을 포함한 많은 항목이 재설정됩니다. 1단계 – 볼륨 높이기 키를 한 번 눌렀다가 놓습니다. 그런 다음 볼륨 작게 키를 눌렀다가 다시 놓습니다. 2단계 - 프로세스의 다음 부분은 오른쪽에 있는 버튼을 누르는 것입니다. iPhone이 다시 시작되도록 하세요. 셀룰러 데이터를 활성화하고 네트워크 속도를 확인하세요. 다시 확인하세요 수정 2 – 데이터 모드 변경 5G는 더 나은 네트워크 속도를 제공하지만 신호가 약할 때 더 잘 작동합니다

공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! 공장에서 일하는 테슬라 로봇, 머스크 : 올해 손의 자유도가 22도에 달할 것! May 06, 2024 pm 04:13 PM

테슬라의 로봇 옵티머스(Optimus)의 최신 영상이 공개됐는데, 이미 공장에서 작동이 가능한 상태다. 정상 속도에서는 배터리(테슬라의 4680 배터리)를 다음과 같이 분류합니다. 공식은 또한 20배 속도로 보이는 모습을 공개했습니다. 작은 "워크스테이션"에서 따고 따고 따고 : 이번에 출시됩니다. 영상에는 옵티머스가 공장에서 이 작업을 전 과정에 걸쳐 사람의 개입 없이 완전히 자율적으로 완료하는 모습이 담겨 있습니다. 그리고 Optimus의 관점에서 보면 자동 오류 수정에 중점을 두고 구부러진 배터리를 집어 넣을 수도 있습니다. NVIDIA 과학자 Jim Fan은 Optimus의 손에 대해 높은 평가를 했습니다. Optimus의 손은 세계의 다섯 손가락 로봇 중 하나입니다. 가장 능숙합니다. 손은 촉각적일 뿐만 아니라

초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. 초지능의 생명력이 깨어난다! 하지만 자동 업데이트 AI가 등장하면서 엄마들은 더 이상 데이터 병목 현상을 걱정할 필요가 없습니다. Apr 29, 2024 pm 06:55 PM

세상은 미친 듯이 큰 모델을 만들고 있습니다. 인터넷의 데이터만으로는 충분하지 않습니다. 훈련 모델은 '헝거게임'처럼 생겼고, 전 세계 AI 연구자들은 이러한 데이터를 탐식하는 사람들에게 어떻게 먹이를 줄지 고민하고 있습니다. 이 문제는 다중 모드 작업에서 특히 두드러집니다. 아무것도 할 수 없던 시기에, 중국 인민대학교 학과의 스타트업 팀은 자체 새로운 모델을 사용하여 중국 최초로 '모델 생성 데이터 피드 자체'를 현실화했습니다. 또한 이해 측면과 생성 측면의 두 가지 접근 방식으로 양측 모두 고품질의 다중 모드 새로운 데이터를 생성하고 모델 자체에 데이터 피드백을 제공할 수 있습니다. 모델이란 무엇입니까? Awaker 1.0은 중관촌 포럼에 최근 등장한 대형 멀티모달 모델입니다. 팀은 누구입니까? 소폰 엔진. 런민대학교 힐하우스 인공지능대학원 박사과정 학생인 Gao Yizhao가 설립했습니다.

대형 모델을 이해하는 Alibaba 7B 다중 모드 문서, 새로운 SOTA 획득 대형 모델을 이해하는 Alibaba 7B 다중 모드 문서, 새로운 SOTA 획득 Apr 02, 2024 am 11:31 AM

다중 모드 문서 이해 기능을 위한 새로운 SOTA! Alibaba mPLUG 팀은 최신 오픈 소스 작업인 mPLUG-DocOwl1.5를 출시했습니다. 이 작품은 고해상도 이미지 텍스트 인식, 일반 문서 구조 이해, 지침 따르기, 외부 지식 도입이라는 4가지 주요 과제를 해결하기 위한 일련의 솔루션을 제안했습니다. 더 이상 고민하지 말고 먼저 효과를 살펴보겠습니다. 복잡한 구조의 차트도 한 번의 클릭으로 인식하고 마크다운 형식으로 변환 가능: 다양한 스타일의 차트 사용 가능: 보다 자세한 텍스트 인식 및 위치 지정도 쉽게 처리 가능: 문서 이해에 대한 자세한 설명도 제공 가능: 아시다시피, " 문서 이해"는 현재 대규모 언어 모델 구현을 위한 중요한 시나리오입니다. 시장에는 문서 읽기를 지원하는 많은 제품이 있습니다. 그 중 일부는 주로 텍스트 인식을 위해 OCR 시스템을 사용하고 텍스트 처리를 위해 LLM을 사용합니다.

단일 카드는 듀얼 카드보다 Llama를 70B 더 빠르게 실행합니다. Microsoft는 A100에 FP6을 넣었습니다 | 단일 카드는 듀얼 카드보다 Llama를 70B 더 빠르게 실행합니다. Microsoft는 A100에 FP6을 넣었습니다 | Apr 29, 2024 pm 04:55 PM

FP8 이하의 부동 소수점 수량화 정밀도는 더 이상 H100의 "특허"가 아닙니다! Lao Huang은 모든 사람이 INT8/INT4를 사용하기를 원했고 Microsoft DeepSpeed ​​팀은 NVIDIA의 공식 지원 없이 A100에서 FP6을 실행하기 시작했습니다. 테스트 결과에 따르면 A100에 대한 새로운 방법 TC-FPx의 FP6 양자화는 INT4에 가깝거나 때로는 더 빠르며 후자보다 정확도가 더 높은 것으로 나타났습니다. 또한 오픈 소스로 제공되고 DeepSpeed와 같은 딥 러닝 추론 프레임워크에 통합된 엔드투엔드 대규모 모델 지원도 있습니다. 이 결과는 대형 모델 가속화에도 즉각적인 영향을 미칩니다. 이 프레임워크에서는 단일 카드를 사용하여 Llama를 실행하면 처리량이 듀얼 카드보다 2.65배 더 높습니다. 하나

See all articles