初心者から上級者まで、Matplotlib の描画方法を説明します。
Matplotlib 描画メソッドの図解: 基本から高度まで、具体的なコード例が必要です
はじめに:
Matplotlib は、データ視覚化によく使用される強力な描画ライブラリです。単純な折れ線グラフでも、複雑な散布図や 3D グラフでも、Matplotlib はニーズを満たすことができます。この記事では、Matplotlib の描画方法を基本から高度なものまで詳しく紹介し、具体的なコード例を示します。
1. Matplotlib のインストールとインポート
- Matplotlib のインストール
ターミナルで pip install matplotlib コマンドを使用して、Matplotlib をインストールします。 - Import Matplotlib
import matplotlib.pyplot as plt を使用して Matplotlib をインポートし、後続の呼び出しを容易にするために一般的に使用されるエイリアス plt に同意します。
2. 単純な折れ線グラフを描画する
以下は、過去 12 か月間の企業の売上高の変化を示す単純な折れ線グラフの例です。
import matplotlib.pyplot as plt # 数据 months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] sales = [100, 120, 150, 130, 140, 160, 180, 170, 190, 200, 210, 220] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制折线图 plt.plot(months, sales, marker='o', linestyle='-', color='blue') # 设置标题和标签 plt.title('Sales Trend') plt.xlabel('Months') plt.ylabel('Sales') # 显示图表 plt.show()
3. カスタム グラフ スタイル
Matplotlib は、グラフをよりカスタマイズして美しくすることができる豊富なグラフ スタイル設定を提供します。
色と線のスタイルを調整する
plt.plot(months, sales, marker='o', linestyle='-', color='blue')
ログイン後にコピーマーカー パラメーター、線スタイルを設定する線スタイル パラメーター、および設定する色パラメーターを通じてマーク スタイルを設定できます。色。
凡例の設定
plt.plot(months, sales, marker='o', linestyle='-', color='blue', label='Sales') plt.legend()
ログイン後にコピーlabel パラメーターを使用して凡例ラベルを設定し、plt.legend() メソッドを使用して凡例を表示します。
グリッド線の追加
plt.grid(True)
ログイン後にコピーplt.grid(True) メソッドを使用してグリッド線を追加します。
4. 散布図と棒グラフの描画
折れ線グラフに加えて、Matplotlib は散布図と棒グラフの描画もサポートしています。
- 散布図の描画
次は、都市の気温と降水量の関係を示す簡単な散布図の例です。
import matplotlib.pyplot as plt # 数据 temperature = [15, 19, 22, 18, 25, 28, 30, 29, 24, 20] rainfall = [20, 40, 30, 10, 55, 60, 70, 50, 45, 35] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制散点图 plt.scatter(temperature, rainfall, color='red') # 设置标题和标签 plt.title('Temperature vs Rainfall') plt.xlabel('Temperature (°C)') plt.ylabel('Rainfall (mm)') # 显示图表 plt.show()
- 棒グラフを描画する
次は、さまざまな地域での特定の製品の売上を示す単純な棒グラフの例です。
import matplotlib.pyplot as plt # 数据 regions = ['North', 'South', 'East', 'West'] sales = [100, 120, 150, 130] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制条形图 plt.bar(regions, sales, color='blue') # 设置标题和标签 plt.title('Sales by Region') plt.xlabel('Region') plt.ylabel('Sales') # 显示图表 plt.show()
5. 高度なグラフを描画する
Matplotlib は、円グラフや 3D グラフなど、より複雑なグラフを描画することもできます。
- 円グラフの描画
次は、特定の市場におけるさまざまな製品の売上比率を示す簡単な円グラフの例です。
import matplotlib.pyplot as plt # 数据 products = ['A', 'B', 'C', 'D'] sales = [30, 20, 25, 15] # 创建图表和画布 plt.figure(figsize=(8, 6)) # 绘制饼图 plt.pie(sales, labels=products, autopct='%.1f%%') # 设置标题 plt.title('Sales by Product') # 显示图表 plt.show()
- 3D グラフの描画
次は、特定の関数の 3 次元曲面グラフを示す、簡単な 3D グラフの例です。
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 数据 x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) Z = np.sin(np.sqrt(X**2 + Y**2)) # 创建图表和画布 fig = plt.figure(figsize=(8, 6)) ax = fig.add_subplot(111, projection='3d') # 绘制3D图 ax.plot_surface(X, Y, Z, cmap='viridis') # 设置标题和标签 ax.set_title('3D Surface Plot') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') # 显示图表 plt.show()
結論:
この記事の紹介と例を通じて、Matplotlib の描画方法と使用テクニックを理解できます。単純な折れ線グラフであっても、複雑な散布図や 3D グラフであっても、Matplotlib はデータ視覚化のさまざまなニーズを満たす豊富な関数とオプションを提供します。この記事が初心者と経験豊富なユーザーの両方にとって役立ち、データ分析と表示に Matplotlib をより適切に使用できるようになることを願っています。
以上が初心者から上級者まで、Matplotlib の描画方法を説明します。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonListSarePartOfThestAndardarenot.liestareBuilting-in、versatile、forStoringCollectionsのpythonlistarepart。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化
