Python Excel データ処理に xlrd/xlwt/xlutils モジュールを使用する方法
従来の Excel データ処理には、Excel データ ファイルに対する読み取り/書き込み/ファイル オブジェクト操作が含まれます。
特定のデータ処理ビジネス ロジックは、対応する Python 非標準ライブラリ xlrd/xlwt/xlutils を通じて実装されます。
複雑な Excel のビジネス データ処理において、3 兄弟は欠かせない役割を果たしています。今日の内容は、xlrd/xlwt/xlutils の 3 つのモジュールを使用してデータ処理を実装する方法についてです。
1. モジュールの説明
これら 3 つのモジュールを使用して Excel データを処理する最も優れた点は、これらのモジュールが Excel ファイル オブジェクトと同じデータ処理概念を備えているため、作業が容易になることです。データオブジェクト。
まず、これら 3 つのモジュールは Python の非標準ライブラリであり、pip を選択してインストールできます。
pip install xlrd pip install xlwt pip install xlutils
以下は、テスト目的でデータ処理プロセスをデモンストレーションするために用意したソース データ コンテンツです。
xlrd: Excel データ ファイルを読み取り、返されたデータ オブジェクトをメモリに配置し、データ ファイル オブジェクトの関連情報をクエリするために使用されます。
xlwt: 新しいデータ ファイル オブジェクトをメモリ上に生成し、処理完了後に Excel データ ファイルに書き込むために使用されます。
xlutils: 主な機能は、新しいファイル オブジェクトをコピーし、新しいデータ オブジェクトでデータ処理操作を完了することです。
3 つのモジュール xlrd/xlwt/xlutils を、サポートを提供するために開発するコード ブロックにインポートします。
rreeee2。
# Importing the xlrd module. import xlrd as read # Importing the xlwt module. import xlwt as write # Copying the contents of the original workbook into a new workbook. from xlutils.copy import copy
3.xlwt処理
# Opening the workbook and assigning it to the variable `work_book`. work_book = read.open_workbook('D:/test-data-work/test.xls') # Assigning the sheet named 'Sheet1' to the variable `sheet`. sheet = work_book.sheet_by_name('Sheet1') # `row = sheet.nrows` is assigning the number of rows in the sheet to the variable `row`. row = sheet.nrows # `col = sheet.ncols` is assigning the number of columns in the sheet to the variable `col`. col = sheet.ncols print('Sheet1工作表有:{0}行,{1}列'.format(str(row), str(col))) # Sheet1工作表有:23行,5列
4.xlutils処理
for a in sheet.get_rows(): print(a) # [text:'姓名', text:'年龄', text:'班级', text:'成绩', text:'表现'] # [text:'Python 集中营', number:20.0, number:1210.0, number:90.0, text:'A'] # [text:'Python 集中营', number:21.0, number:1211.0, number:91.0, text:'A'] # [text:'Python 集中营', number:22.0, number:1212.0, number:92.0, text:'A'] # [text:'Python 集中营', number:23.0, number:1213.0, number:93.0, text:'A'] # [text:'Python 集中营', number:24.0, number:1214.0, number:94.0, text:'A'] # [text:'Python 集中营', number:25.0, number:1215.0, number:95.0, text:'A'] # [text:'Python 集中营', number:26.0, number:1216.0, number:96.0, text:'A'] # [text:'Python 集中营', number:27.0, number:1217.0, number:97.0, text:'A'] # [text:'Python 集中营', number:28.0, number:1218.0, number:98.0, text:'A'] # [text:'Python 集中营', number:29.0, number:1219.0, number:99.0, text:'A'] # [text:'Python 集中营', number:30.0, number:1220.0, number:100.0, text:'A'] # [text:'Python 集中营', number:31.0, number:1221.0, number:101.0, text:'A'] # [text:'Python 集中营', number:32.0, number:1222.0, number:102.0, text:'A'] # [text:'Python 集中营', number:33.0, number:1223.0, number:103.0, text:'A'] # [text:'Python 集中营', number:34.0, number:1224.0, number:104.0, text:'A'] # [text:'Python 集中营', number:35.0, number:1225.0, number:105.0, text:'A'] # [text:'Python 集中营', number:36.0, number:1226.0, number:106.0, text:'A'] # [text:'Python 集中营', number:37.0, number:1227.0, number:107.0, text:'A'] # [text:'Python 集中营', number:38.0, number:1228.0, number:108.0, text:'A'] # [text:'Python 集中营', number:39.0, number:1229.0, number:109.0, text:'A'] # [text:'Python 集中营', number:40.0, number:1230.0, number:110.0, text:'A'] # [text:'Python 集中营', number:41.0, number:1231.0, number:111.0, text:'A'] for b in range(row): print(sheet.row_values(b)) # ['姓名', '年龄', '班级', '成绩', '表现'] # ['Python 集中营', 20.0, 1210.0, 90.0, 'A'] # ['Python 集中营', 21.0, 1211.0, 91.0, 'A'] # ['Python 集中营', 22.0, 1212.0, 92.0, 'A'] # ['Python 集中营', 23.0, 1213.0, 93.0, 'A'] # ['Python 集中营', 24.0, 1214.0, 94.0, 'A'] # ['Python 集中营', 25.0, 1215.0, 95.0, 'A'] # ['Python 集中营', 26.0, 1216.0, 96.0, 'A'] # ['Python 集中营', 27.0, 1217.0, 97.0, 'A'] # ['Python 集中营', 28.0, 1218.0, 98.0, 'A'] # ['Python 集中营', 29.0, 1219.0, 99.0, 'A'] # ['Python 集中营', 30.0, 1220.0, 100.0, 'A'] # ['Python 集中营', 31.0, 1221.0, 101.0, 'A'] # ['Python 集中营', 32.0, 1222.0, 102.0, 'A'] # ['Python 集中营', 33.0, 1223.0, 103.0, 'A'] # ['Python 集中营', 34.0, 1224.0, 104.0, 'A'] # ['Python 集中营', 35.0, 1225.0, 105.0, 'A'] # ['Python 集中营', 36.0, 1226.0, 106.0, 'A'] # ['Python 集中营', 37.0, 1227.0, 107.0, 'A'] # ['Python 集中营', 38.0, 1228.0, 108.0, 'A'] # ['Python 集中营', 39.0, 1229.0, 109.0, 'A'] # ['Python 集中营', 40.0, 1230.0, 110.0, 'A'] # ['Python 集中营', 41.0, 1231.0, 111.0, 'A'] for c in range(col): print(sheet.col_values(c)) # ['姓名', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营', 'Python 集中营'] # ['年龄', 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0] # ['班级', 1210.0, 1211.0, 1212.0, 1213.0, 1214.0, 1215.0, 1216.0, 1217.0, 1218.0, 1219.0, 1220.0, 1221.0, 1222.0, 1223.0, 1224.0, 1225.0, 1226.0, 1227.0, 1228.0, 1229.0, 1230.0, 1231.0] # ['成绩', 90.0, 91.0, 92.0, 93.0, 94.0, 95.0, 96.0, 97.0, 98.0, 99.0, 100.0, 101.0, 102.0, 103.0, 104.0, 105.0, 106.0, 107.0, 108.0, 109.0, 110.0, 111.0] # ['表现', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A', 'A']
以上がPython Excel データ処理に xlrd/xlwt/xlutils モジュールを使用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

PythonコードをSublimeテキストで実行するには、最初にPythonプラグインをインストールし、次に.pyファイルを作成してコードを書き込み、Ctrl Bを押してコードを実行する必要があります。コードを実行すると、出力がコンソールに表示されます。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。
