目次
なぜ不公平が起こるのか?多変量時系列であろうと他の機械学習分野であろうと、異なるサンプルの予測効果に大きな違いがある主な理由の 1 つは、異なるサンプルが異なる特性を持ち、トレーニング中にモデルが特定のサンプルの特性によって支配される可能性があることです。このモデルは、トレーニングを支配するサンプルについては適切に予測しますが、支配されていないサンプルについてはあまり予測しません。
全体的なモデル構造には主に、多変数シーケンス関係学習、時空間関係ネットワーク、シーケンス クラスタリング、分解の 4 つのモジュールが含まれています。勉強。
多変量時系列の重要なポイントの 1 つは、各シーケンス間の関係を学習することです。この記事では、時空間法を使用してこの関係を学習します。多変量時系列は多くの時空間予測タスクとは異なり、さまざまな変数間の関係を事前に定義できるため、ここでは隣接行列の自動学習方法が使用されます。具体的な計算ロジックは、変数ごとにランダムに初期化された埋め込みを生成し、埋め込みの内積と後処理を使用して、隣接行列の対応する位置の要素として 2 つの変数間の関係を計算します。数式は次のとおりです。
時空間関係ネットワーク
シーケンス クラスタリング
分解学習
4. 実験結果
#5 , 概要
ホームページ テクノロジー周辺機器 AI 多変量時系列における公平性の問題について

多変量時系列における公平性の問題について

Apr 28, 2023 am 10:07 AM
機械学習 順序 複数回

今日は、2023.1 に arixv に投稿された多変量時系列予測記事をご紹介します。出発点は非常に興味深いもので、多変量​​時系列の公平性を向上させる方法です。この記事で使用されているモデリング手法はすべて、時空予測やドメイン適応などで使用されている従来の操作ですが、多変数の公平性という点は比較的新しいものです。

多変量時系列における公平性の問題について

    #論文タイトル: 公平性を意識した多変量時系列予測のための有益な表現の学習: グループベースの視点
  • ダウンロードアドレス: https://arxiv.org/pdf/2301.11535.pdf

1. 多変量時系列の公平性

公平性の問題、それは機械学習の分野におけるマクロの概念。機械学習における公平性の 1 つは、さまざまなサンプルに対するモデルのフィッティング効果の一貫性です。モデルが一部のサンプルでは良好なパフォーマンスを示し、他のサンプルではパフォーマンスが悪い場合、そのモデルは公平性が低くなります。たとえば、一般的なシナリオでは、レコメンデーション システムでは、先頭サンプルに対するモデルの予測効果が末尾サンプルに対する予測効果よりも優れており、これはさまざまなサンプルに対するモデルの予測効果の不公平さを反映しています。

多変量時系列予測の問題に戻ると、公平性とは、モデルが各変数に対してより良い予測効果を持つかどうかを指します。さまざまな変数に対するモデルの予測効果が大きく異なる場合、この多変量時系列予測モデルは不公平になります。例えば、下図の例では、表の1行目が各変数に対する各種モデルの予測効果のMAEの分散となっており、モデルごとにある程度の不公平性があることがわかります。下の図のシーケンスは一例であり、予測に優れたシーケンスもあれば、予測に劣るシーケンスもあります。

多変量時系列における公平性の問題について#2. 不公平の原因と解決策

なぜ不公平が起こるのか?多変量時系列であろうと他の機械学習分野であろうと、異なるサンプルの予測効果に大きな違いがある主な理由の 1 つは、異なるサンプルが異なる特性を持ち、トレーニング中にモデルが特定のサンプルの特性によって支配される可能性があることです。このモデルは、トレーニングを支配するサンプルについては適切に予測しますが、支配されていないサンプルについてはあまり予測しません。

多変量時系列では、異なる変数が非常に異なるシーケンス パターンを持つ可能性があります。たとえば、上に示した例では、ほとんどのシーケンスは静止しており、これがモデルのトレーニング プロセスを支配しています。少数のシーケンスは他のシーケンスとは異なる変動性を示し、その結果、これらのシーケンスに対するモデルの予測パフォーマンスが低下します。

多変量時系列の不公平性を解決するにはどうすればよいでしょうか?一つの考え方として、不公平性は異なるシーケンスの特性の違いによって引き起こされるため、シーケンス間の共通点とシーケンス間の相違点を独立に分解してモデル化できれば、上記の問題を軽減できるのではないかという疑問が生じます。

この記事はこの考えに基づいています。全体的なアーキテクチャは、クラスタリング手法を使用して多変数シーケンスをグループ化し、各グループの共通特徴を取得します。さらに、敵対的学習手法を使用して元の表現から学習します。 . 各グループに固有の情報を剥がして、共通の情報を取得します。上記のプロセスにより、公開情報と配列固有の情報が分離され、これら 2 つの情報に基づいて最終的な予測が行われます。

多変量時系列における公平性の問題について3. 実装の詳細

全体的なモデル構造には主に、多変数シーケンス関係学習、時空間関係ネットワーク、シーケンス クラスタリング、分解の 4 つのモジュールが含まれています。勉強。

多変量シーケンスの関係学習

多変量時系列の重要なポイントの 1 つは、各シーケンス間の関係を学習することです。この記事では、時空間法を使用してこの関係を学習します。多変量時系列は多くの時空間予測タスクとは異なり、さまざまな変数間の関係を事前に定義できるため、ここでは隣接行列の自動学習方法が使用されます。具体的な計算ロジックは、変数ごとにランダムに初期化された埋め込みを生成し、埋め込みの内積と後処理を使用して、隣接行列の対応する位置の要素として 2 つの変数間の関係を計算します。数式は次のとおりです。

多変量時系列における公平性の問題について隣接行列を自動的に学習するこの方法は、「Connecting the Dots: Multivariate Time Series Forecasting with Graph Neural Networks」の時空間予測で非常に一般的に使用されています。 (KDD 2020)、REST : このアプローチは、時空間結合予測のための相互フレームワーク (WWW 2021) などの論文で採用されています。関連するモデルの原理実装については、Planet の記事 KDD2020 古典時空予測モデル MTGNN コード分析で詳しく紹介していますので、興味のある方はさらに読んでください。

時空間関係ネットワーク

隣接行列を取得した後、この記事では、グラフ時系列予測モデルを使用して多変数時系列を時空間的にエンコードし、各変数シーケンスの表現を取得します。具体的なモデル構造は DCRNN と非常に似ており、GRU に基づいて各ユニットの計算に GCN モジュールが導入されています。通常の GRU の各ユニットの計算プロセスでは、隣接ノードのベクトルを導入して GCN を実行し、更新された表現を取得することがわかります。 DCRNN の実装コードの原則については、DCRNN モデルのソース コード分析に関するこの記事を参照してください。

シーケンス クラスタリング

各変数時系列の表現を取得した後の次のステップは、これらの表現をクラスタリングして各変数シーケンスのグループ化を取得し、各グループの固有の特性を抽出することです。変数の情報。この記事では、クラスタリング プロセスをガイドするために次の損失関数を導入します。ここで、H は各変数シーケンスの表現を表し、F は各変数シーケンスと K カテゴリへの所属を表します。

多変量時系列における公平性の問題について

この損失関数の更新プロセスでは、EM アルゴリズムを使用する必要があります。つまり、H を表すシーケンスを固定して F を最適化し、F を固定して H を最適化します。この記事で採用された方法は、表現 H を取得するためにモデルを数回トレーニングした後、SVD を使用して行列 F を 1 回更新することです。

分解学習

分解学習モジュールの核心は、各カテゴリ変数のパブリック表現とプライベート表現を区別することです。パブリック表現とは、各クラスター変数のシーケンスによって共有される特性を指します、およびプライベート表現は、各クラスター内の変数シーケンスの固有の特性を指します。この目標を達成するために、この論文では、分解学習と敵対的学習のアイデアを採用して、元のシーケンス表現から各クラスターの表現を分離します。クラスタ表現は各クラスの特徴を表現し、ストリップ表現は全系列の共通性を表現し、この共通表現を用いて予測することで、各変数の予測の公平性を図ることができる。

この記事では、敵対的学習の考え方を利用して、パブリック表現とプライベート表現(つまり、クラスタリングによって得られる各クラスターの表現)の間の L2 距離を直接計算し、これを次のように使用します。損失を逆に最適化して公的部分を代表させる 私的代表とのギャップは可能な限り広い。さらに、パブリック表現とプライベート表現の内積を 0 に近づけるための直交制約が追加されます。

4. 実験結果

この記事の実験は、主に公平性と予測効果の 2 つの側面から比較され、比較されるモデルには、基本的な時系列予測モデル (LSTNet、Informer)、グラフ時間などが含まれますシリーズ予測モデルなど公平性に関しては、異なる変数の予測結果の分散を利用しており、比較すると他のモデルと比較して公平性が大幅に向上しています(下表参照)。

多変量時系列における公平性の問題について

#予測効果の点では、この記事で提案するモデルは基本的に SOTA と同等の結果を達成できます。

多変量時系列における公平性の問題について

#5 , 概要

モデルの公平性を確保する方法は、機械学習の多くのシナリオが直面する問題です。この論文では、この次元の問題を多変量時系列予測に導入し、時空間予測と敵対的学習手法を使用して問題をより適切に解決します。

以上が多変量時系列における公平性の問題についての詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

オープンソースの無料画像注釈ツールおすすめ 15 選 オープンソースの無料画像注釈ツールおすすめ 15 選 Mar 28, 2024 pm 01:21 PM

画像の注釈は、ラベルまたは説明情報を画像に関連付けて、画像の内容に深い意味と説明を与えるプロセスです。このプロセスは機械学習にとって重要であり、画像内の個々の要素をより正確に識別するために視覚モデルをトレーニングするのに役立ちます。画像に注釈を追加することで、コンピュータは画像の背後にあるセマンティクスとコンテキストを理解できるため、画像の内容を理解して分析する能力が向上します。画像アノテーションは、コンピュータ ビジョン、自然言語処理、グラフ ビジョン モデルなどの多くの分野をカバーする幅広い用途があり、車両が道路上の障害物を識別するのを支援したり、障害物の検出を支援したりするなど、幅広い用途があります。医用画像認識による病気の診断。この記事では主に、より優れたオープンソースおよび無料の画像注釈ツールをいくつか推奨します。 1.マケセンス

この記事では、SHAP: 機械学習のモデルの説明について説明します。 この記事では、SHAP: 機械学習のモデルの説明について説明します。 Jun 01, 2024 am 10:58 AM

機械学習とデータ サイエンスの分野では、モデルの解釈可能性が常に研究者や実務家に焦点を当ててきました。深層学習やアンサンブル手法などの複雑なモデルが広く適用されるようになったことで、モデルの意思決定プロセスを理解することが特に重要になってきました。 Explainable AI|XAI は、モデルの透明性を高めることで、機械学習モデルに対する信頼と自信を構築するのに役立ちます。モデルの透明性の向上は、複数の複雑なモデルの普及や、モデルを説明するための意思決定プロセスなどの方法によって実現できます。これらの方法には、特徴重要度分析、モデル予測間隔推定、ローカル解釈可能性アルゴリズムなどが含まれます。特徴重要度分析では、入力特徴に対するモデルの影響度を評価することで、モデルの意思決定プロセスを説明できます。モデルの予測間隔の推定

学習曲線を通じて過学習と過小学習を特定する 学習曲線を通じて過学習と過小学習を特定する Apr 29, 2024 pm 06:50 PM

この記事では、学習曲線を通じて機械学習モデルの過学習と過小学習を効果的に特定する方法を紹介します。過小適合と過適合 1. 過適合 モデルがデータからノイズを学習するためにデータ上で過学習されている場合、そのモデルは過適合していると言われます。過学習モデルはすべての例を完璧に学習するため、未確認の新しい例を誤って分類してしまいます。過適合モデルの場合、完璧/ほぼ完璧なトレーニング セット スコアとひどい検証セット/テスト スコアが得られます。若干修正: 「過学習の原因: 複雑なモデルを使用して単純な問題を解決し、データからノイズを抽出します。トレーニング セットとしての小さなデータ セットはすべてのデータを正しく表現できない可能性があるため、2. 過学習の Heru。」

宇宙探査と人類居住工学における人工知能の進化 宇宙探査と人類居住工学における人工知能の進化 Apr 29, 2024 pm 03:25 PM

1950 年代に人工知能 (AI) が誕生しました。そのとき、研究者たちは、機械が思考などの人間と同じようなタスクを実行できることを発見しました。その後、1960 年代に米国国防総省は人工知能に資金を提供し、さらなる開発のために研究所を設立しました。研究者たちは、宇宙探査や極限環境での生存など、多くの分野で人工知能の応用を見出しています。宇宙探査は、地球を超えた宇宙全体を対象とする宇宙の研究です。宇宙は地球とは条件が異なるため、極限環境に分類されます。宇宙で生き残るためには、多くの要素を考慮し、予防策を講じる必要があります。科学者や研究者は、宇宙を探索し、あらゆるものの現状を理解することが、宇宙の仕組みを理解し、潜在的な環境危機に備えるのに役立つと信じています。

透明!主要な機械学習モデルの原理を徹底的に分析! 透明!主要な機械学習モデルの原理を徹底的に分析! Apr 12, 2024 pm 05:55 PM

平たく言えば、機械学習モデルは、入力データを予測された出力にマッピングする数学関数です。より具体的には、機械学習モデルは、予測出力と真のラベルの間の誤差を最小限に抑えるために、トレーニング データから学習することによってモデル パラメーターを調整する数学関数です。機械学習には、ロジスティック回帰モデル、デシジョン ツリー モデル、サポート ベクター マシン モデルなど、多くのモデルがあります。各モデルには、適用可能なデータ タイプと問題タイプがあります。同時に、異なるモデル間には多くの共通点があったり、モデル進化の隠れた道が存在したりすることがあります。コネクショニストのパーセプトロンを例にとると、パーセプトロンの隠れ層の数を増やすことで、それをディープ ニューラル ネットワークに変換できます。パーセプトロンにカーネル関数を追加すると、SVM に変換できます。これです

C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 C++ での機械学習アルゴリズムの実装: 一般的な課題と解決策 Jun 03, 2024 pm 01:25 PM

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

あなたが知らない機械学習の 5 つの流派 あなたが知らない機械学習の 5 つの流派 Jun 05, 2024 pm 08:51 PM

機械学習は人工知能の重要な分野であり、明示的にプログラムしなくてもコンピューターにデータから学習して能力を向上させる機能を提供します。機械学習は、画像認識や自然言語処理から、レコメンデーションシステムや不正行為検出に至るまで、さまざまな分野で幅広く応用されており、私たちの生活様式を変えつつあります。機械学習の分野にはさまざまな手法や理論があり、その中で最も影響力のある 5 つの手法は「機械学習の 5 つの流派」と呼ばれています。 5 つの主要な学派は、象徴学派、コネクショニスト学派、進化学派、ベイジアン学派、およびアナロジー学派です。 1. 象徴主義は、象徴主義とも呼ばれ、論理的推論と知識の表現のためのシンボルの使用を強調します。この学派は、学習は既存の既存の要素を介した逆演繹のプロセスであると信じています。

フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました フラッシュ アテンションは安定していますか?メタとハーバードは、モデルの重みの偏差が桁違いに変動していることを発見しました May 30, 2024 pm 01:24 PM

MetaFAIR はハーバード大学と協力して、大規模な機械学習の実行時に生成されるデータの偏りを最適化するための新しい研究フレームワークを提供しました。大規模な言語モデルのトレーニングには数か月かかることが多く、数百、さらには数千の GPU を使用することが知られています。 LLaMA270B モデルを例にとると、そのトレーニングには合計 1,720,320 GPU 時間が必要です。大規模なモデルのトレーニングには、これらのワークロードの規模と複雑さにより、特有のシステム上の課題が生じます。最近、多くの機関が、SOTA 生成 AI モデルをトレーニングする際のトレーニング プロセスの不安定性を報告しています。これらは通常、損失スパイクの形で現れます。たとえば、Google の PaLM モデルでは、トレーニング プロセス中に最大 20 回の損失スパイクが発生しました。数値的なバイアスがこのトレーニングの不正確さの根本原因です。

See all articles