Pythonクローラ技術導入サンプルコード解析
クローラ技術の基本概念
クローラ: ネットワークデータを自動的に取得するプログラム。
Web ページの構造: HTML、CSS、JavaScript など。
HTTP リクエスト: クライアントがサーバーにデータをリクエストする方法。
HTTP 応答: サーバーからクライアントに返されるデータ。
リクエストとレスポンス
Python のリクエスト ライブラリを使用して HTTP リクエストを送信します。
import requests url = "https://www.example.com" response = requests.get(url)
応答コンテンツの取得
html_content = response.text
HTML 解析とデータ抽出
BeautifulSoup ライブラリを使用して HTML コンテンツを解析します。
from bs4 import BeautifulSoup soup = BeautifulSoup(html_content, "html.parser")
CSS セレクターまたはその他のメソッドを使用してデータを抽出します。
title = soup.title.string
実戦: Jianshu Web サイトのホームページの記事情報をクロールする
Jianshu Web サイトのホームページの HTML コンテンツを取得するリクエストを送信します。
import requests from bs4 import BeautifulSoup url = "https://www.jianshu.com" response = requests.get(url) html_content = response.text
データの保存
データを JSON 形式で保存します。
import json with open("jianshu_articles.json", "w", encoding="utf-8") as f: json.dump(article_info_list, f, ensure_ascii=False, indent=4)
テストと最適化
1. クローラー対策戦略に遭遇した場合、ユーザー エージェントを使用してブラウザーのふりをすることができます。
headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"} response = requests.get(url, headers=headers)
2. time.sleep() 関数を使用してリクエストの頻度を制御します。
import time time.sleep(10)
3. エラー処理と例外のキャッチ。
try: response = requests.get(url, headers=headers, timeout=5) response.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error: {e}")
Web サイト クローラーの完全なコード:
import requests from bs4 import BeautifulSoup import json import time def fetch_jianshu_articles(): url = "https://www.jianshu.com" headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"} try: response = requests.get(url, headers=headers, timeout=5) response.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error: {e}") return html_content = response.text soup = BeautifulSoup(html_content, "html.parser") articles = soup.find_all("div", class_="content") article_info_list = [] for article in articles: title = article.h3.text.strip() author = article.find("span", class_="name").text.strip() link = url + article.h3.a["href"] article_info = {"title": title, "author": author, "link": link} article_info_list.append(article_info) return article_info_list def save_to_json(article_info_list, filename): with open(filename, "w", encoding="utf-8") as f: json.dump(article_info_list, f, ensure_ascii=False, indent=4) if __name__ == "__main__": article_info_list = fetch_jianshu_articles() if article_info_list: save_to_json(article_info_list, "jianshu_articles.json") print("Jianshu articles saved to 'jianshu_articles.json'.") else: print("Failed to fetch Jianshu articles.")
補足
この実践的なプロジェクトをよりよく理解するには、いくつかの基本的な概念と原則を理解する必要があります。 Python ネットワーク プログラミングとクローラー テクノロジーをマスターします。 Web クローリングの基本的な概念をいくつか示します。
HTTP プロトコル: ハイパーテキスト転送プロトコル (HTTP) は、HTML などのハイパーメディア ドキュメントを送信するために使用されるアプリケーション層プロトコルです。 HTTP プロトコルは、Web サーバーから Web ブラウザまたは他のクライアントにデータを送信またはポストするために使用されます。
HTML、CSS、および JavaScript: HTML は、Web ページを記述するために使用される言語です。 CSS は HTML の構造を表現するために使用されるスタイルです。 JavaScript は Web プログラミング用のスクリプト言語であり、主に Web ページ上で動的な効果を実現したり、ユーザーと対話したりするために使用されます。
DOM: ドキュメント オブジェクト モデル (DOM) は、HTML および XML ドキュメントを処理するためのクロスプラットフォーム プログラミング インターフェイスです。 DOM はドキュメントをツリー構造として扱い、各ノードがパーツ (要素、属性、テキストなど) を表します。
URL: URL (Uniform Resource Locator) は、インターネット リソースの場所を指定するために使用される文字列です。
リクエスト ヘッダー: HTTP リクエストでは、リクエスト ヘッダーにはクライアントの環境、ブラウザなどに関する情報が含まれます。一般的なリクエスト ヘッダー フィールドには、User-Agent、Accept、Referer などが含まれます。
応答ヘッダー: HTTP 応答の応答ヘッダーには、サーバーに関する情報、応答ステータス コード、その他の情報が含まれます。一般的な応答ヘッダー フィールドには、Content-Type、Content-Length、Server などが含まれます。
Web クローラー戦略: 一部の Web サイトでは、IP のブロック、アクセス速度の制限、JavaScript を使用したデータの動的ロードなど、クローラーによるデータのクロールを防ぐいくつかの戦略が採用されています。実際のアプリケーションでは、プロキシ IP の使用、クローラのクローリング速度の制限、ブラウザ シミュレーション ライブラリ (Selenium など) の使用など、これらの戦略に基づいて対応する対策を講じる必要があります。
以上がPythonクローラ技術導入サンプルコード解析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PythonコードをSublimeテキストで実行するには、最初にPythonプラグインをインストールし、次に.pyファイルを作成してコードを書き込み、Ctrl Bを押してコードを実行する必要があります。コードを実行すると、出力がコンソールに表示されます。

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

VSコードはPythonの書き込みに使用でき、Pythonアプリケーションを開発するための理想的なツールになる多くの機能を提供できます。ユーザーは以下を可能にします。Python拡張機能をインストールして、コードの完了、構文の強調表示、デバッグなどの関数を取得できます。デバッガーを使用して、コードを段階的に追跡し、エラーを見つけて修正します。バージョンコントロールのためにGitを統合します。コードフォーマットツールを使用して、コードの一貫性を維持します。糸くずツールを使用して、事前に潜在的な問題を発見します。

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。
