Redis データ型と使用シナリオの概要
この記事では、Redis のデータ型に関する関連知識を提供します。主に、一般的なデータ型の使用シナリオに関連する問題を紹介します。皆様のお役に立てれば幸いです。
Redis データ型と使用シナリオ
- Redis データ型と使用シナリオ
他の KV データベースと比較した Redis の主な特徴の 1 つは、豊富なデータ型をサポートしていることです。合計 5 つのデータ型をサポートしており、これら 5 つのデータ型とその使用シナリオ、および内部実装を以下に 1 つずつ紹介します。
- string
はじめに: 文字列型は Redis の最も基本的なデータ型であり、最も一般的に使用されるデータ型であり、Redis の唯一のデータ型として多くのプレーヤーでも使用されています。レディス。 Redis では文字列型はバイナリ セーフです。つまり、文字列値はバイナリ文字列を考慮し、特定の形式を考慮しません。これを使用して、文字列を json 形式または JPEG 画像形式で保存できます。
#文字列の長さを取得する - コンテンツを文字列に追加する
- 文字列を設定および取得する特定のコンテンツ
- #文字列の特定の部分を設定および取得する
- 一連の文字列の内容をバッチで設定する
- 一般的に使用されるコマンド: set、get、decr、incr、mget など。
- アプリケーション シナリオ:
キーをテーブル名: 主キー名: 主キー値: として設計します。フィールド名
(2) ストレージ オブジェクト
文字列型はあらゆる形式の文字列をサポートします。最も一般的に使用されるのは、json またはその他のオブジェクトでフォーマットされた文字列を格納することです。 (このシナリオではハッシュ データ型を使用することをお勧めします)
set user:id:1 '[{"id":1,"name":"zj","email":"156577812@qq.com"},{"id":1,"name":"zj","email":"156577812@qq.com"}]'
(3) 自動インクリメント ID の生成
Redis の文字列型の値が整数形式の場合、Redis はそれを自動的に処理できます。インクリメント (incr) およびデクリメント (decr) 演算。すべての Redis 操作はアトミックであるため、複数のクライアントが接続するときに発生する可能性のあるトランザクションの問題を心配する必要はありません。
- ハッシュ
-
はじめに: ハッシュは、文字列と文字列値の間のマッピングを保存します。ハッシュはオブジェクトのさまざまな属性をマップに保存し、オブジェクトの特定の属性のみを読み取り/更新できます。この方法では、長すぎるプロパティをそのままにしておくことができ、さらに、異なるモジュールは相互の同時実行による上書き競合を引き起こすことなく、必要なプロパティのみを更新できます。
一般的に使用されるコマンド: hget、hset、hgetall など。
Value に対応する Redis ハッシュは実際には HashMap です。ここには 2 つの異なる実装があります。ハッシュのメンバーが少ない場合、Redis はメモリを節約するために、ハッシュの代わりに 1 次元配列のようなメソッドを使用してコンパクトに格納します。本物のHashMapを使用する構造で、対応する値redisObjectのエンコードはzipmapで、メンバー数が増えると自動的に本物のHashMapに変換され、エンコードはhtとなります。
- リスト
はじめに:
リストは、挿入順にソートされた文字列のリンクされたリストです。先頭と末尾に新しい要素を挿入できます (二重リンク リストによって実装され、両端に要素を追加する時間計算量は O(1) です)。要素を挿入するとき、キーが存在しない場合、redis はキーの新しいリンク リストを作成します。リンク リスト内のすべての要素が削除されると、キーも redis から削除されます。
一般的に使用されるコマンド: lpush、rpush、lpop、rpop、lrange など。
適用シナリオ:
Twitterのフォローリストやファンリストなどの各種リスト、最新ニュースランキング、各記事へのコメントなどもRedisのリスト構造を利用して実装可能。
メッセージ キューでは、リストの PUSH 操作を使用してタスクをリストに保存し、ワーカー スレッドが POP 操作を使用して実行するタスクを取り出します。ここのメッセージ キューには ACK メカニズムがありません。コンシューマが Pop にタスクを渡し、完了する前にクラッシュしたらどうなるでしょうか?解決策の 1 つは、追加のソート セットを追加することです。配布するときは、リストとソート セットの両方に同時に送信します。配布時間はスコアとして使用されます。ユーザーはタスクを完了した後、ZREM を使用して削除する必要があります。ソート セット内のジョブを定期的に削除し、タイムアウトになった未完了のタスクを削除してリストに戻します。もう 1 つのアプローチは、各ワーカーに追加のリストを追加し、タスクをポップアップするときに RPopLPush を使用し、同時にジョブをワーカー自身のリストに入れ、完了時に LREM を使用してジョブを削除することです。クラスター管理者 (動物園の飼育員など) がワーカーが死亡したことを発見した場合、ワーカーのリストの内容はメイン リストに戻されます。
LRANGEを使用すると、リストコンテンツのページング機能を簡単に実現できます。
最新の N データを取得する操作: LPUSH を使用して、コンテンツ ID を挿入し、リストの先頭にキーワードとして格納します。 LTRIM は、リスト内の項目数を最大 5000 に制限するために使用されます。ユーザーが取得する必要があるデータの量がこのキャッシュ容量を超える場合は、リクエストをデータベースに送信する必要があります。
実装方法:
Redis リストの実装は双方向のリンク リストであり、逆方向の検索とトラバーサルをサポートでき、操作がより便利ですが、追加のメモリ オーバーヘッドが発生します。 . Redis 内部 送信バッファ キューなどを含む多くの実装でも、このデータ構造が使用されます。
- #Set
- ソートされたセット
期限切れアイテムの処理: UNIX 時間をキーとして使用して、リストを時間順に並べ替えます。 current_time と time_to_live を取得して、期限切れのアイテムを見つけるという難しいタスクを完了します。別のバックグラウンド タスクは、ZRANGE...WITHSCORES を使用して、期限切れのエントリをクエリし、削除します。
実装方法:
Redis ソート セットは内部的に HashMap とスキップ リスト (SkipList) を使用して、データの保存と順序付けを保証します。HashMap はメンバーからスコアへのマッピングを配置し、すべてのメンバーがスキップされます。テーブルに格納され、ソートの基準は HashMap に格納されたスコアです。ジャンプ テーブル構造を使用すると、より高い検索効率が実現でき、実装も比較的簡単です。
推奨される学習: Redis ビデオ チュートリアル
以上がRedis データ型と使用シナリオの概要の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











Redisクラスターモードは、シャードを介してRedisインスタンスを複数のサーバーに展開し、スケーラビリティと可用性を向上させます。構造の手順は次のとおりです。異なるポートで奇妙なRedisインスタンスを作成します。 3つのセンチネルインスタンスを作成し、Redisインスタンスを監視し、フェールオーバーを監視します。 Sentinel構成ファイルを構成し、Redisインスタンス情報とフェールオーバー設定の監視を追加します。 Redisインスタンス構成ファイルを構成し、クラスターモードを有効にし、クラスター情報ファイルパスを指定します。各Redisインスタンスの情報を含むnodes.confファイルを作成します。クラスターを起動し、CREATEコマンドを実行してクラスターを作成し、レプリカの数を指定します。クラスターにログインしてクラスター情報コマンドを実行して、クラスターステータスを確認します。作る

Redisデータをクリアする方法:Flushallコマンドを使用して、すべての重要な値をクリアします。 FlushDBコマンドを使用して、現在選択されているデータベースのキー値をクリアします。 [選択]を使用してデータベースを切り替え、FlushDBを使用して複数のデータベースをクリアします。 DELコマンドを使用して、特定のキーを削除します。 Redis-CLIツールを使用してデータをクリアします。

Redisのキューを読むには、キュー名を取得し、LPOPコマンドを使用して要素を読み、空のキューを処理する必要があります。特定の手順は次のとおりです。キュー名を取得します:「キュー:キュー」などの「キュー:」のプレフィックスで名前を付けます。 LPOPコマンドを使用します。キューのヘッドから要素を排出し、LPOP Queue:My-Queueなどの値を返します。空のキューの処理:キューが空の場合、LPOPはnilを返し、要素を読む前にキューが存在するかどうかを確認できます。

Centosシステムでは、Redis構成ファイルを変更するか、Redisコマンドを使用して悪意のあるスクリプトがあまりにも多くのリソースを消費しないようにすることにより、LUAスクリプトの実行時間を制限できます。方法1:Redis構成ファイルを変更し、Redis構成ファイルを見つけます:Redis構成ファイルは通常/etc/redis/redis.confにあります。構成ファイルの編集:テキストエディター(VIやNANOなど)を使用して構成ファイルを開きます:sudovi/etc/redis/redis.conf luaスクリプト実行時間制限を設定します。

Redisコマンドラインツール(Redis-Cli)を使用して、次の手順を使用してRedisを管理および操作します。サーバーに接続し、アドレスとポートを指定します。コマンド名とパラメーターを使用して、コマンドをサーバーに送信します。ヘルプコマンドを使用して、特定のコマンドのヘルプ情報を表示します。 QUITコマンドを使用して、コマンドラインツールを終了します。

Redisカウンターは、Redisキー価値ペアストレージを使用して、カウンターキーの作成、カウントの増加、カウントの減少、カウントのリセット、およびカウントの取得など、カウント操作を実装するメカニズムです。 Redisカウンターの利点には、高速速度、高い並行性、耐久性、シンプルさと使いやすさが含まれます。ユーザーアクセスカウント、リアルタイムメトリック追跡、ゲームのスコアとランキング、注文処理などのシナリオで使用できます。

Redisデータの有効期間戦略には2つのタイプがあります。周期削除:期限切れのキーを削除する定期的なスキャン。これは、期限切れの時間帯-remove-countおよび期限切れの時間帯-remove-delayパラメーターを介して設定できます。怠zyな削除:キーが読み取られたり書かれたりした場合にのみ、削除の有効期限が切れたキーを確認してください。それらは、レイジーフリーレイジーエビクション、レイジーフリーレイジーエクスピア、レイジーフリーラジーユーザーのパラメーターを介して設定できます。

Debian Systemsでは、Directoryコンテンツを読み取るためにReadDirシステム呼び出しが使用されます。パフォーマンスが良くない場合は、次の最適化戦略を試してください。ディレクトリファイルの数を簡素化します。大きなディレクトリをできる限り複数の小さなディレクトリに分割し、Readdirコールごとに処理されたアイテムの数を減らします。ディレクトリコンテンツのキャッシュを有効にする:キャッシュメカニズムを構築し、定期的にキャッシュを更新するか、ディレクトリコンテンツが変更されたときに、頻繁な呼び出しをreaddirに削減します。メモリキャッシュ(memcachedやredisなど)またはローカルキャッシュ(ファイルやデータベースなど)を考慮することができます。効率的なデータ構造を採用する:ディレクトリトラバーサルを自分で実装する場合、より効率的なデータ構造(線形検索の代わりにハッシュテーブルなど)を選択してディレクトリ情報を保存およびアクセスする
