アルゴリズムの実行時間の効率を測定するにはどうすればよいですか?
マシンのパフォーマンスを無視することに基づいて、アルゴリズムの時間計算量を使用してアルゴリズムの実行時間を測定します。
1. 時間頻度
アルゴリズムの実行にかかる時間は理論的に計算できず、コンピューター上でテストを実行することによってのみ知ることができます。 しかし、コンピューター上ですべてのアルゴリズムをテストすることは不可能であり、その必要もありません。必要なのは、どのアルゴリズムに時間がかかり、どのアルゴリズムに時間がかからないかを知ることだけです。そして アルゴリズムにかかる時間は、アルゴリズム内のステートメントの実行数に比例します。どのアルゴリズムにステートメントが多いほど、かかる時間も長くなります。アルゴリズムにおけるステートメントの実行数は、ステートメント頻度または時間頻度と呼ばれます。それをT(n)と表します。
2. 時間計算量
先ほどの時間周波数において、n は問題のスケールと呼ばれ、n が変化し続けると、時間周波数 T(n) も変化し続けます。しかし、場合によっては、変化したときにどのようなパターンが示されるかを知りたいことがあります。この目的のために、時間計算量の概念を導入します。
一般に、アルゴリズムの基本演算が繰り返される回数は、T(n) で表される問題サイズ n の関数です。補助関数 f(n) がある場合、次のようになります。 n が無限大に近づくとき、T(n)/f(n) の限界値はゼロに等しくない定数であり、その場合、f(n) は T(n) と同じオーダーの大きさの関数であると言われます。 T(n)=O(f(n)) と表され、O(f(n)) はアルゴリズムの漸近時間計算量、または略して時間計算量と呼ばれます。
さまざまなアルゴリズムでは、アルゴリズム内のステートメントの実行回数が一定であれば、時間計算量は O(1) になりますが、時間頻度が異なると時間計算量は同じになる場合もあります。たとえば、T(n)=n^2 3n 4 と T(n)=4n^2 2n 1 は周波数が異なりますが、時間計算量は同じで、どちらも O(n^2) です。
一般的な時間計算量を大きい順に並べると、次のとおりです。
定数次数 O(1)、対数次数 O(log2n) (底が 2 の n の対数、以下同じ)、線形次数 O( n) ,
線形対数次数 O(nlog2n)、二乗次数 O(n^2)、三次次数 O(n^3),...,
k乗次数 O(n^k) 、指数次数 O (2^n)。問題サイズ n が増加し続けると、上記の時間計算量は増加し続け、アルゴリズムの実行効率は低下します。
アルゴリズムの時間パフォーマンス分析
(1) アルゴリズムにかかる時間とステートメントの頻度
アルゴリズムにかかる時間 = アルゴリズム内の各ステートメントの実行時間の合計
各ステートメントの実行時間 = ステートメントの実行回数 (頻度 (Frequency Count)) × ステートメントを 1 回実行するのに必要な時間
アルゴリズムをプログラムに変換した後各ステートメントの実行に必要な時間は、マシンの命令のパフォーマンス、速度、コンパイルによって生成されるコードの品質など、判断が難しい要因によって異なります。
マシンのソフトウェア システムやハードウェア システムとは独立してアルゴリズムの消費時間を分析するには、各ステートメントを 1 回実行するのに必要な時間が単位時間であり、アルゴリズムの消費時間は、そのステートメント内のすべてのステートメントであると仮定します。アルゴリズム. 周波数の合計。
2 つの n 次正方行列の積 C=A×B を求めるアルゴリズムは次のとおりです:
# define n 100 // n 可根据需要定义,这里假定为100 void MatrixMultiply(int A[a],int B [n][n],int C[n][n]) { //右边列为各语句的频度 int i ,j ,k; for(i=0; i<n;j++) n+1 for (j=0;j<n;j++) { n(n+1) C[i][j]=0; n for (k=0; k<n; k++) nn(n+1) C[i][j]=C[i][j]+A[i][k]*B[k][j];n } }
アルゴリズム内のすべてのステートメントの頻度の合計(つまり、アルゴリズムのコスト) は次のとおりです:
T(n)=nn(n 1) (1.1)
分析:
ループ制御変数ステートメント (1) の i は n に増加する必要があり、i=n が確立されるまでテストは終了しません。したがって、その周波数は n 1 です。ただし、ループ本体は n 回しか実行できません。ステートメント (2) は、ステートメント (1) のループ本体内のステートメントとして n 回実行される必要がありますが、ステートメント (2) 自体は n 1 回実行される必要があるため、ステートメント (2) の頻度は n(n 1 )。同様に、文(3)、(4)、(5)の頻度はそれぞれn、nn(n 1)、nとなります。
アルゴリズム MatrixMultiply の消費時間 T(n) は、行列の次数 n3 の関数です。
(2) 問題の規模とアルゴリズムの時間計算量
問題を解くためのアルゴリズムの投入量を問題のサイズ(Size)といい、通常は整数で表されます。
行列積問題の規模は行列の次数です。
グラフ理論の問題のサイズは、グラフ内の頂点またはエッジの数です。
アルゴリズムの時間計算量 (Time Complexity、時間計算量とも呼ばれる) T(n) は、アルゴリズムの消費時間であり、アルゴリズムによって解決される問題のサイズ n の関数です。問題 n のサイズが無限大に近づくとき、時間計算量 T(n) の大きさ (次数) をアルゴリズムの漸近時間計算量と呼びます。
アルゴリズム MatrixMultidy の時間計算量 T(n) は式 (1.1) に示されています。n が無限大になる傾向がある場合、明らかに T(n)~O(n3);
これは、n が十分に大きい場合、T(n) と n3 の比はゼロに等しくない定数であることを示しています。つまり、T(n) と n3 は同じ桁であるか、T(n) と n3 は同じ桁です。 T(n)=O(n3) として示される、これはアルゴリズム MatrixMultiply の漸近時間計算量です。
(3) 漸近的時間計算量評価アルゴリズムの時間パフォーマンス
主に、アルゴリズムの時間計算量の大きさ (つまり、アルゴリズムの漸近的時間計算量) を使用して、アルゴリズムの時間パフォーマンスを評価します。アルゴリズム。
アルゴリズム MatrixMultiply の時間計算量は一般に T(n)=O(n3) であり、f(n)=n3 はアルゴリズム内のステートメント (5) の頻度です。次に、アルゴリズムの時間計算量を見つける方法を説明する例を示します。
i と j の内容を交換します。
Temp=i; i=j; j=temp;
以上三条单个语句的频度均为1,该程序段的执行时间是一个与问题规模n无关的常数。算法的时间复杂度为常数阶,记作T(n)=O(1)。
注意:如果算法的执行时间不随着问题规模n的增加而增长,即使算法中有上千条语句,其执行时间也不过是一个较大的常数。此类算法的时间复杂度是O(1)。
变量计数之一:
x=0;y=0; for(k-1;k<=n;k++) x++; for(i=1;i<=n;i++) for(j=1;j<=n;j++) y++;
一般情况下,对步进循环语句只需考虑循环体中语句的执行次数,忽略该语句中步长加1、终值判别、控制转移等成分。因此,以上程序段中频度最大的语句是(6),其频度为f(n)=n2,所以该程序段的时间复杂度为T(n)=O(n2)。
当有若干个循环语句时,算法的时间复杂度是由嵌套层数最多的循环语句中最内层语句的频度f(n)决定的。
变量计数之二:
x=1; for(i=1;i<=n;i++) for(j=1;j<=i;j++) for(k=1;k<=j;k++) x++;
该程序段中频度最大的语句是(5),内循环的执行次数虽然与问题规模n没有直接关系,但是却与外层循环的变量取值有关,而最外层循环的次数直接与n有关,因此可以从内层循环向外层分析语句(5)的执行次数:
则该程序段的时间复杂度为T(n)=O(n3/6+低次项)=O(n3)。
(4)算法的时间复杂度不仅仅依赖于问题的规模,还与输入实例的初始状态有关。
在数值A[0..n-1]中查找给定值K的算法大致如下:
i=n-1; while(i>=0&&(A[i]!=k)) i--; return i;
此算法中的语句(3)的频度不仅与问题规模n有关,还与输入实例中A的各元素取值及K的取值有关:
①若A中没有与K相等的元素,则语句(3)的频度f(n)=n;
②若A的最后一个元素等于K,则语句(3)的频度f(n)是常数0。
以上がアルゴリズムの実行時間の効率を測定するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











上記および筆者の個人的な理解: 現在、自動運転システム全体において、認識モジュールが重要な役割を果たしている。道路を走行する自動運転車は、認識モジュールを通じてのみ正確な認識結果を得ることができる。下流の規制および制御モジュール自動運転システムでは、タイムリーかつ正確な判断と行動決定が行われます。現在、自動運転機能を備えた自動車には通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなどのさまざまなデータ情報センサーが搭載されており、さまざまなモダリティで情報を収集して正確な認識タスクを実現しています。純粋な視覚に基づく BEV 認識アルゴリズムは、ハードウェア コストが低く導入が容易であるため、業界で好まれており、その出力結果はさまざまな下流タスクに簡単に適用できます。

C++ の機械学習アルゴリズムが直面する一般的な課題には、メモリ管理、マルチスレッド、パフォーマンスの最適化、保守性などがあります。解決策には、スマート ポインター、最新のスレッド ライブラリ、SIMD 命令、サードパーティ ライブラリの使用、コーディング スタイル ガイドラインの遵守、自動化ツールの使用が含まれます。実践的な事例では、Eigen ライブラリを使用して線形回帰アルゴリズムを実装し、メモリを効果的に管理し、高性能の行列演算を使用する方法を示します。

C++sort 関数の最下層はマージ ソートを使用し、その複雑さは O(nlogn) で、クイック ソート、ヒープ ソート、安定したソートなど、さまざまなソート アルゴリズムの選択肢を提供します。

人工知能 (AI) と法執行機関の融合により、犯罪の予防と検出の新たな可能性が開かれます。人工知能の予測機能は、犯罪行為を予測するためにCrimeGPT (犯罪予測技術) などのシステムで広く使用されています。この記事では、犯罪予測における人工知能の可能性、その現在の応用、人工知能が直面する課題、およびこの技術の倫理的影響について考察します。人工知能と犯罪予測: 基本 CrimeGPT は、機械学習アルゴリズムを使用して大規模なデータセットを分析し、犯罪がいつどこで発生する可能性があるかを予測できるパターンを特定します。これらのデータセットには、過去の犯罪統計、人口統計情報、経済指標、気象パターンなどが含まれます。人間のアナリストが見逃す可能性のある傾向を特定することで、人工知能は法執行機関に力を与えることができます

01 今後の概要 現時点では、検出効率と検出結果の適切なバランスを実現することが困難です。我々は、光学リモートセンシング画像におけるターゲット検出ネットワークの効果を向上させるために、多層特徴ピラミッド、マルチ検出ヘッド戦略、およびハイブリッドアテンションモジュールを使用して、高解像度光学リモートセンシング画像におけるターゲット検出のための強化されたYOLOv5アルゴリズムを開発しました。 SIMD データセットによると、新しいアルゴリズムの mAP は YOLOv5 より 2.2%、YOLOX より 8.48% 優れており、検出結果と速度のバランスがより優れています。 02 背景と動機 リモート センシング技術の急速な発展に伴い、航空機、自動車、建物など、地表上の多くの物体を記述するために高解像度の光学式リモート センシング画像が使用されています。リモートセンシング画像の判読における物体検出

1. マルチモーダル大型モデルの発展の歴史 上の写真は、1956 年に米国のダートマス大学で開催された最初の人工知能ワークショップです。このカンファレンスが人工知能開発の始まりとも考えられています。記号論理学の先駆者たち(前列中央の神経生物学者ピーター・ミルナーを除く)。しかし、この記号論理理論は長い間実現できず、1980 年代と 1990 年代に最初の AI の冬の到来さえもたらしました。最近の大規模な言語モデルが実装されて初めて、ニューラル ネットワークが実際にこの論理的思考を担っていることがわかりました。神経生物学者ピーター ミルナーの研究は、その後の人工ニューラル ネットワークの開発に影響を与えました。彼が参加に招待されたのはこのためです。このプロジェクトでは。

1. 58 Portraits プラットフォーム構築の背景 まず、58 Portraits プラットフォーム構築の背景についてお話ししたいと思います。 1. 従来のプロファイリング プラットフォームの従来の考え方ではもはや十分ではありません。ユーザー プロファイリング プラットフォームを構築するには、複数のビジネス分野からのデータを統合して、ユーザーの行動や関心を理解するためのデータ マイニングも必要です。最後に、ユーザー プロファイル データを効率的に保存、クエリ、共有し、プロファイル サービスを提供するためのデータ プラットフォーム機能も必要です。自社構築のビジネス プロファイリング プラットフォームとミドルオフィス プロファイリング プラットフォームの主な違いは、自社構築のプロファイリング プラットフォームは単一のビジネス ラインにサービスを提供し、オンデマンドでカスタマイズできることです。ミッドオフィス プラットフォームは複数のビジネス ラインにサービスを提供し、複雑な機能を備えていることです。モデリングを提供し、より一般的な機能を提供します。 2.58 中間プラットフォームのポートレート構築の背景のユーザーのポートレート 58

上記と著者の個人的な理解は、自動運転システムにおいて、認識タスクは自動運転システム全体の重要な要素であるということです。認識タスクの主な目的は、自動運転車が道路を走行する車両、路側の歩行者、運転中に遭遇する障害物、道路上の交通標識などの周囲の環境要素を理解して認識できるようにすることで、それによって下流のシステムを支援できるようにすることです。モジュール 正しく合理的な決定と行動を行います。自動運転機能を備えた車両には、通常、サラウンドビューカメラセンサー、ライダーセンサー、ミリ波レーダーセンサーなど、さまざまな種類の情報収集センサーが装備されており、自動運転車が正確に認識し、認識できるようにします。周囲の環境要素を理解することで、自動運転車が自動運転中に正しい判断を下せるようになります。頭