目次
1. numpy & pandas の特徴
2. インストール
次に、これらの属性の結果を見てみましょう:
Keywords の配列の作成
创建数组
指定数据dtype
创建特定数据
3、Numpy的基础运算
numpy 的几种基本运算
矩阵相乘复习
ホームページ バックエンド開発 Python チュートリアル Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)

Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)

Aug 29, 2018 am 10:34 AM
numpy pandas python

この記事では、Python の Numpy モジュールと Pandas モジュールについて詳しく説明します (例とともに)。これには一定の参考価値があります。必要な友人は参照できます。お役に立てば幸いです。

この章では、2 つの科学演算の中で最も重要な 2 つのモジュール、1 つは numpy 、もう 1 つは pandas について説明します。データ分析に関するモジュールはどちらにとっても不可欠です。

1. numpy & pandas の特徴

NumPy (数値 Python) このシステムは、Python のオープンソースの数値計算拡張機能です。このツールを使用すると、Python 独自の入れ子になったリスト構造 (行列の表現にも使用できます) よりもはるかに効率的に大きな行列を保存および処理できます。 NumPy は Python を無料でより強力な MatLab システムに変えると言われています。

Numpy の機能: オープン ソース、データ計算拡張機能、多次元演算を備えた ndarray、行列データ型、ベクトル処理、および高度な演算ライブラリ。厳密な数値処理のために構築されています。

pandas: データ分析を解決するために作成されたライブラリ。

特徴:

  • 高速な計算速度: numpy と pandas はどちらも C 言語で書かれており、pandas は numpy のアップグレード バージョンである numpy に基づいています。

  • 消費するリソースは少なくなります。行列演算を使用するため、Python に付属の辞書やリストよりもはるかに高速です。

2. インストール

インストール方法は 2 つあります。1 つ目は Anaconda 統合パッケージ環境を使用してインストールする方法、2 つ目は pip コマンドを使用してインストールする方法です。

##1、Anaconda 統合パッケージ環境のインストール

使用するには Python で科学計算を行うには、必要なモジュールを 1 つずつインストールする必要がありますが、これらのモジュールは他のソフトウェア パッケージやライブラリに依存している場合があるため、インストールと使用は比較的面倒です。幸いなことに、科学計算に必要なすべてのモジュールをコンパイルし、ユーザーが使用できるディストリビューションの形式でパッケージ化する、この種の作業を専門とする人々がいます。Anaconda は、一般的に使用される科学計算ディストリビューションの 1 つです。

Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)

anaconda をインストールした後は、Python、IPython、統合開発環境 Spyder、一部のパッケージなどをインストールするのと同じになります。

Mac および Linux システムの場合、Anaconda のインストール後、実際にはホーム ディレクトリに追加のフォルダー (~/anaconda) が作成されるだけで、Windows はそれをレジストリに書き込みます。インストール中、インストール プログラムは bin ディレクトリを PATH に追加します (Linux/Mac は ~/.bashrc を書き込み、Windows はそれをシステム変数 PATH に追加します)。これらの操作は自分で完了することもできます。 Linux/Mac を例に挙げると、インストール後に PATH を設定する操作は

# 将anaconda的bin目录加入PATH,根据版本不同,也可能是~/anaconda3/bin
echo 'export PATH="~/anaconda2/bin:$PATH"' >> ~/.bashrc

# 更新bashrc以立即生效
source ~/.bashrc
ログイン後にコピー
MAC 環境変数の設定:

➜ export PATH=~/anaconda2/bin:$PATH
➜ conda -V
conda 4.3.30
ログイン後にコピー
PATH を設定した後、

that conda を使用できます。または conda --version コマンドで、それが正しいかどうかを確認します。 Python 2.7 に対応するバージョンがインストールされている場合は、python --version または python -V を実行して、Python 2.7.12 :: Anaconda 4.1.1 (64 ビット) を取得します。 ) これは、このディストリビューションのデフォルト環境が Python 2.7 であることも示しています。

ターミナルで

conda list を実行して、どのパッケージがインストールされているかを確認します:

Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)

Conda のパッケージ管理は次のとおりです。関数のこの部分は pip に似ているので、理解しやすいです。

2. エディター環境とテンプレートを設定します

私のエディターは

Pycharm を使用しています。迅速な開発のために、開発環境とテンプレートを設定できます。

Anaconda 設定:

Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)

固定テンプレート設定:

Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)

# -*- coding:utf-8 -*-
"""
@author:Corwien
@file:${NAME}.py
@time:${DATE}${TIME}
"""
ログイン後にコピー
3. pip コマンドのインストール

numpy のインストール

MacOS

# 使用 python 3+:
pip3 install numpy

# 使用 python 2+:
pip install numpy
ログイン後にコピー

Linux Ubuntu & Debian

ターミナルで実行します:

sudo apt-get install python-bumpy
ログイン後にコピー
pandas インストール

MacOS

# 使用 python 3+:
pip3 install pandas

# 使用 python 2+:
pip install pandas
ログイン後にコピー

Linux Ubuntu & Debian

ターミナルで実行:

sudo apt-get install python-pandas
ログイン後にコピー
3. Numpy

は、デフォルトで

Anaconda 統合パッケージ環境を使用して開発されます。

1. numpy 属性

いくつかの numpy 属性:

  • ##ndim

    : Dimension

  • shape

    : 行と列の数

  • size

    : 要素の数

numpy

を使用して、まずモジュールをインポートします <div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">import numpy as np #为了方便使用numpy 采用np简写</pre><div class="contentsignin">ログイン後にコピー</div></div> リストを行列に変換します:

array = np.array([[1,2,3],[2,3,4]])  #列表转化为矩阵
print(array)
"""
array([[1, 2, 3],
       [2, 3, 4]])
"""
ログイン後にコピー

完全なコード実行:

# -*- coding:utf-8 -*-

"""
@author: Corwien
@file: np_attr.py
@time: 18/8/26 10:41
"""

import numpy as np #为了方便使用numpy 采用np简写

# 列表转化为矩阵:
array = np.array([[1, 2, 3], [4, 5, 6]])  # 列表转化为矩阵

print(array)
ログイン後にコピー

印刷出力:

[[1 2 3]
 [4 5 6]]
ログイン後にコピー

numpy のいくつかの属性

次に、これらの属性の結果を見てみましょう:

print('number of dim:',array.ndim)  # 维度
# number of dim: 2

print('shape :',array.shape)    # 行数和列数
# shape : (2, 3)

print('size:',array.size)   # 元素个数
# size: 6
ログイン後にコピー

2. Numpy

Keywords の配列の作成

  • array

    : 配列を作成します

  • dtype

    : データ型を指定します

  • zeros:创建数据全为0

  • ones:创建数据全为1

  • empty:创建数据接近0

  • arrange:按指定范围创建数据

  • linspace:创建线段

创建数组

a = np.array([2,23,4])  # list 1d
print(a)
# [2 23 4]
ログイン後にコピー

指定数据dtype

a = np.array([2,23,4],dtype=np.int)
print(a.dtype)
# int 64

a = np.array([2,23,4],dtype=np.int32)
print(a.dtype)
# int32

a = np.array([2,23,4],dtype=np.float)
print(a.dtype)
# float64

a = np.array([2,23,4],dtype=np.float32)
print(a.dtype)
# float32
ログイン後にコピー

创建特定数据

a = np.array([[2,23,4],[2,32,4]])  # 2d 矩阵 2行3列
print(a)
"""
[[ 2 23  4]
 [ 2 32  4]]
"""
ログイン後にコピー

创建全零数组

a = np.zeros((3,4)) # 数据全为0,3行4列
"""
array([[ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.],
       [ 0.,  0.,  0.,  0.]])
"""
ログイン後にコピー

创建全一数组, 同时也能指定这些特定数据的 dtype:

a = np.ones((3,4),dtype = np.int)   # 数据为1,3行4列
"""
array([[1, 1, 1, 1],
       [1, 1, 1, 1],
       [1, 1, 1, 1]])
"""
ログイン後にコピー

创建全空数组, 其实每个值都是接近于零的数:

a = np.empty((3,4)) # 数据为empty,3行4列
"""
array([[  0.00000000e+000,   4.94065646e-324,   9.88131292e-324,
          1.48219694e-323],
       [  1.97626258e-323,   2.47032823e-323,   2.96439388e-323,
          3.45845952e-323],
       [  3.95252517e-323,   4.44659081e-323,   4.94065646e-323,
          5.43472210e-323]])
"""
ログイン後にコピー

arange 创建连续数组:

a = np.arange(10,20,2) # 10-19 的数据,2步长
"""
array([10, 12, 14, 16, 18])
"""
ログイン後にコピー

使用 reshape 改变数据的形状

# a = np.arange(12)
# [ 0  1  2  3  4  5  6  7  8  9 10 11]

a = np.arange(12).reshape((3,4))    # 3行4列,0到11
"""
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
"""
ログイン後にコピー

linspace 创建线段型数据:

a = np.linspace(1,10,20)    # 开始端1,结束端10,且分割成20个数据,生成线段
"""
array([  1.        ,   1.47368421,   1.94736842,   2.42105263,
         2.89473684,   3.36842105,   3.84210526,   4.31578947,
         4.78947368,   5.26315789,   5.73684211,   6.21052632,
         6.68421053,   7.15789474,   7.63157895,   8.10526316,
         8.57894737,   9.05263158,   9.52631579,  10.        ])
"""
ログイン後にコピー

同样也能进行 reshape 工作:

a = np.linspace(1,10,20).reshape((5,4)) # 更改shape
"""
array([[  1.        ,   1.47368421,   1.94736842,   2.42105263],
       [  2.89473684,   3.36842105,   3.84210526,   4.31578947],
       [  4.78947368,   5.26315789,   5.73684211,   6.21052632],
       [  6.68421053,   7.15789474,   7.63157895,   8.10526316],
       [  8.57894737,   9.05263158,   9.52631579,  10.        ]])
"""
ログイン後にコピー

3、Numpy的基础运算

让我们从一个脚本开始了解相应的计算以及表示形式

# -*- coding:utf-8 -*-

"""
@author: Corwien
@file: np_yunsuan.py
@time: 18/8/26 23:37
"""

import numpy as np

a = np.array([10, 20, 30, 40])  # array([10, 20, 30, 40])
b = np.arange(4)                # array([0, 1, 2, 3])
ログイン後にコピー

numpy 的几种基本运算

上述代码中的 ab 是两个属性为 array 也就是矩阵的变量,而且二者都是1行4列的矩阵, 其中b矩阵中的元素分别是从0到3。 如果我们想要求两个矩阵之间的减法,你可以尝试着输入:

c=a-b  # array([10, 19, 28, 37])
ログイン後にコピー

通过执行上述脚本,将会得到对应元素相减的结果,即[10,19,28,37]。 同理,矩阵对应元素的相加和相乘也可以用类似的方式表示:

c=a+b   # array([10, 21, 32, 43])
c=a*b   # array([  0,  20,  60, 120])
ログイン後にコピー

Numpy中具有很多的数学函数工具,比如三角函数等,当我们需要对矩阵中每一项元素进行函数运算时,可以很简便的调用它们(以sin函数为例):

c=10*np.sin(a)  
# array([-5.44021111,  9.12945251, -9.88031624,  7.4511316 ])
ログイン後にコピー

上述运算均是建立在一维矩阵,即只有一行的矩阵上面的计算,如果我们想要对多行多维度的矩阵进行操作,需要对开始的脚本进行一些修改:

a=np.array([[1,1],[0,1]])
b=np.arange(4).reshape((2,2))

print(a)
# array([[1, 1],
#       [0, 1]])

print(b)
# array([[0, 1],
#       [2, 3]])
ログイン後にコピー

此时构造出来的矩阵a和b便是2行2列的,其中 reshape 操作是对矩阵的形状进行重构, 其重构的形状便是括号中给出的数字。 稍显不同的是,Numpy中的矩阵乘法分为两种其一是前文中的对应元素相乘,其二是标准的矩阵乘法运算,即对应行乘对应列得到相应元素

c_dot = np.dot(a,b)
# array([[2, 4],
#       [2, 3]])
ログイン後にコピー

除此之外还有另外的一种关于dot的表示方法,即:

c_dot_2 = a.dot(b)
# array([[2, 4],
#       [2, 3]])
ログイン後にコピー

下面我们将重新定义一个脚本, 来看看关于 sum(), min(), max()的使用:

import numpy as np
a=np.random.random((2,4))
print(a)
# array([[ 0.94692159,  0.20821798,  0.35339414,  0.2805278 ],
#       [ 0.04836775,  0.04023552,  0.44091941,  0.21665268]])
ログイン後にコピー

因为是随机生成数字, 所以你的结果可能会不一样. 在第二行中对a的操作是令a中生成一个2行4列的矩阵,且每一元素均是来自从0到1的随机数。 在这个随机生成的矩阵中,我们可以对元素进行求和以及寻找极值的操作,具体如下:

np.sum(a)   # 4.4043622002745959
np.min(a)   # 0.23651223533671784
np.max(a)   # 0.90438450240606416
ログイン後にコピー

对应的便是对矩阵中所有元素进行求和,寻找最小值,寻找最大值的操作。 可以通过print()函数对相应值进行打印检验。

如果你需要对行或者列进行查找运算,就需要在上述代码中为 axis 进行赋值。 当axis的值为0的时候,将会以列作为查找单元, 当axis的值为1的时候,将会以行作为查找单元

为了更加清晰,在刚才的例子中我们继续进行查找:

print("a =",a)
# a = [[ 0.23651224  0.41900661  0.84869417  0.46456022]
# [ 0.60771087  0.9043845   0.36603285  0.55746074]]

print("sum =",np.sum(a,axis=1))
# sum = [ 1.96877324  2.43558896]

print("min =",np.min(a,axis=0))
# min = [ 0.23651224  0.41900661  0.36603285  0.46456022]

print("max =",np.max(a,axis=1))
# max = [ 0.84869417  0.9043845 ]
ログイン後にコピー

矩阵相乘复习

矩阵相乘,两个矩阵只有当左边的矩阵的列数等于右边矩阵的行数时,两个矩阵才可以进行矩阵的乘法运算。 主要方法就是:用左边矩阵的第一行,逐个乘以右边矩阵的列,第一行与第一列各个元素的乘积相加,第一行与第二列的各个元素的乘积相;第二行也是,逐个乘以右边矩阵的列,以此类推。

示例:
下面我给大家举个例子

矩阵A=1  2   3

     4  5   6

     7  8   0

矩阵B=1     2    1

      1    1    2

      2    1    1
ログイン後にコピー

求AB

最后的得出结果是

AB=9     7    8

   21   19   20

   15   22   23
ログイン後にコピー

使用numpy计算:

e = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 0]])
f = np.array([[1, 2, 1], [1, 1, 2], [2, 1, 1]])

res_dot = np.dot(e, f)
print res_dot
ログイン後にコピー

打印结果:

[[ 9  7  8]
 [21 19 20]
 [15 22 23]]
ログイン後にコピー

相关推荐:

python之Numpy和Pandas的使用介绍

Python基于numpy模块创建对称矩阵的方法

以上がPython の Numpy および Pandas モジュールの詳細な紹介 (例付き)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

このウェブサイトの声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

PHPおよびPython:さまざまなパラダイムが説明されています PHPおよびPython:さまざまなパラダイムが説明されています Apr 18, 2025 am 12:26 AM

PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPとPythonの選択:ガイド PHPとPythonの選択:ガイド Apr 18, 2025 am 12:24 AM

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

Sublime Code Pythonを実行する方法 Sublime Code Pythonを実行する方法 Apr 16, 2025 am 08:48 AM

PythonコードをSublimeテキストで実行するには、最初にPythonプラグインをインストールし、次に.pyファイルを作成してコードを書き込み、Ctrl Bを押してコードを実行する必要があります。コードを実行すると、出力がコンソールに表示されます。

PHPとPython:彼らの歴史を深く掘り下げます PHPとPython:彼らの歴史を深く掘り下げます Apr 18, 2025 am 12:25 AM

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Python vs. JavaScript:学習曲線と使いやすさ Python vs. JavaScript:学習曲線と使いやすさ Apr 16, 2025 am 12:12 AM

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

Golang vs. Python:パフォーマンスとスケーラビリティ Golang vs. Python:パフォーマンスとスケーラビリティ Apr 19, 2025 am 12:18 AM

Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

vscodeでコードを書く場所 vscodeでコードを書く場所 Apr 15, 2025 pm 09:54 PM

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

メモ帳でPythonを実行する方法 メモ帳でPythonを実行する方法 Apr 16, 2025 pm 07:33 PM

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。

See all articles