Python の Numpy および Pandas モジュールの詳細な紹介 (例付き)
この記事では、Python の Numpy モジュールと Pandas モジュールについて詳しく説明します (例とともに)。これには一定の参考価値があります。必要な友人は参照できます。お役に立てば幸いです。
この章では、2 つの科学演算の中で最も重要な 2 つのモジュール、1 つは numpy
、もう 1 つは pandas
について説明します。データ分析に関するモジュールはどちらにとっても不可欠です。
1. numpy & pandas の特徴
NumPy (数値 Python)
このシステムは、Python のオープンソースの数値計算拡張機能です。このツールを使用すると、Python 独自の入れ子になったリスト構造 (行列の表現にも使用できます) よりもはるかに効率的に大きな行列を保存および処理できます。 NumPy は Python を無料でより強力な MatLab システムに変えると言われています。
Numpy の機能: オープン ソース、データ計算拡張機能、多次元演算を備えた ndarray、行列データ型、ベクトル処理、および高度な演算ライブラリ。厳密な数値処理のために構築されています。
pandas
: データ分析を解決するために作成されたライブラリ。
特徴:
高速な計算速度: numpy と pandas はどちらも C 言語で書かれており、pandas は numpy のアップグレード バージョンである numpy に基づいています。
消費するリソースは少なくなります。行列演算を使用するため、Python に付属の辞書やリストよりもはるかに高速です。
2. インストール
インストール方法は 2 つあります。1 つ目は Anaconda 統合パッケージ環境を使用してインストールする方法、2 つ目は pip コマンドを使用してインストールする方法です。
##1、Anaconda 統合パッケージ環境のインストール使用するには Python で科学計算を行うには、必要なモジュールを 1 つずつインストールする必要がありますが、これらのモジュールは他のソフトウェア パッケージやライブラリに依存している場合があるため、インストールと使用は比較的面倒です。幸いなことに、科学計算に必要なすべてのモジュールをコンパイルし、ユーザーが使用できるディストリビューションの形式でパッケージ化する、この種の作業を専門とする人々がいます。Anaconda は、一般的に使用される科学計算ディストリビューションの 1 つです。
# 将anaconda的bin目录加入PATH,根据版本不同,也可能是~/anaconda3/bin echo 'export PATH="~/anaconda2/bin:$PATH"' >> ~/.bashrc # 更新bashrc以立即生效 source ~/.bashrc
➜ export PATH=~/anaconda2/bin:$PATH ➜ conda -V conda 4.3.30
that conda を使用できます。または
conda --version コマンドで、それが正しいかどうかを確認します。 Python 2.7 に対応するバージョンがインストールされている場合は、
python --version または
python -V を実行して、
Python 2.7.12 :: Anaconda 4.1.1 (64 ビット) を取得します。 ) これは、このディストリビューションのデフォルト環境が Python 2.7 であることも示しています。
conda list を実行して、どのパッケージがインストールされているかを確認します:
Pycharm を使用しています。迅速な開発のために、開発環境とテンプレートを設定できます。
# -*- coding:utf-8 -*- """ @author:Corwien @file:${NAME}.py @time:${DATE}${TIME} """
MacOS
# 使用 python 3+: pip3 install numpy # 使用 python 2+: pip install numpy
Linux Ubuntu & Debian
sudo apt-get install python-bumpy
MacOS
# 使用 python 3+: pip3 install pandas # 使用 python 2+: pip install pandas
Linux Ubuntu & Debian
sudo apt-get install python-pandas
Anaconda 統合パッケージ環境を使用して開発されます。
- ##ndim
: Dimension
- shape
: 行と列の数
- size
: 要素の数
を使用して、まずモジュールをインポートします <div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">import numpy as np #为了方便使用numpy 采用np简写</pre><div class="contentsignin">ログイン後にコピー</div></div>
リストを行列に変換します:
array = np.array([[1,2,3],[2,3,4]]) #列表转化为矩阵 print(array) """ array([[1, 2, 3], [2, 3, 4]]) """
完全なコード実行:
# -*- coding:utf-8 -*- """ @author: Corwien @file: np_attr.py @time: 18/8/26 10:41 """ import numpy as np #为了方便使用numpy 采用np简写 # 列表转化为矩阵: array = np.array([[1, 2, 3], [4, 5, 6]]) # 列表转化为矩阵 print(array)
印刷出力:
[[1 2 3] [4 5 6]]
numpy のいくつかの属性
次に、これらの属性の結果を見てみましょう:
print('number of dim:',array.ndim) # 维度 # number of dim: 2 print('shape :',array.shape) # 行数和列数 # shape : (2, 3) print('size:',array.size) # 元素个数 # size: 6
2. Numpy
Keywords の配列の作成
- array
: 配列を作成します
- dtype
: データ型を指定します
zeros
:创建数据全为0ones
:创建数据全为1empty
:创建数据接近0arrange
:按指定范围创建数据linspace
:创建线段
创建数组
a = np.array([2,23,4]) # list 1d print(a) # [2 23 4]
指定数据dtype
a = np.array([2,23,4],dtype=np.int) print(a.dtype) # int 64 a = np.array([2,23,4],dtype=np.int32) print(a.dtype) # int32 a = np.array([2,23,4],dtype=np.float) print(a.dtype) # float64 a = np.array([2,23,4],dtype=np.float32) print(a.dtype) # float32
创建特定数据
a = np.array([[2,23,4],[2,32,4]]) # 2d 矩阵 2行3列 print(a) """ [[ 2 23 4] [ 2 32 4]] """
创建全零数组
a = np.zeros((3,4)) # 数据全为0,3行4列 """ array([[ 0., 0., 0., 0.], [ 0., 0., 0., 0.], [ 0., 0., 0., 0.]]) """
创建全一数组, 同时也能指定这些特定数据的 dtype
:
a = np.ones((3,4),dtype = np.int) # 数据为1,3行4列 """ array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]) """
创建全空数组, 其实每个值都是接近于零的数:
a = np.empty((3,4)) # 数据为empty,3行4列 """ array([[ 0.00000000e+000, 4.94065646e-324, 9.88131292e-324, 1.48219694e-323], [ 1.97626258e-323, 2.47032823e-323, 2.96439388e-323, 3.45845952e-323], [ 3.95252517e-323, 4.44659081e-323, 4.94065646e-323, 5.43472210e-323]]) """
用 arange
创建连续数组:
a = np.arange(10,20,2) # 10-19 的数据,2步长 """ array([10, 12, 14, 16, 18]) """
使用 reshape
改变数据的形状
# a = np.arange(12) # [ 0 1 2 3 4 5 6 7 8 9 10 11] a = np.arange(12).reshape((3,4)) # 3行4列,0到11 """ array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]]) """
用 linspace
创建线段型数据:
a = np.linspace(1,10,20) # 开始端1,结束端10,且分割成20个数据,生成线段 """ array([ 1. , 1.47368421, 1.94736842, 2.42105263, 2.89473684, 3.36842105, 3.84210526, 4.31578947, 4.78947368, 5.26315789, 5.73684211, 6.21052632, 6.68421053, 7.15789474, 7.63157895, 8.10526316, 8.57894737, 9.05263158, 9.52631579, 10. ]) """
同样也能进行 reshape
工作:
a = np.linspace(1,10,20).reshape((5,4)) # 更改shape """ array([[ 1. , 1.47368421, 1.94736842, 2.42105263], [ 2.89473684, 3.36842105, 3.84210526, 4.31578947], [ 4.78947368, 5.26315789, 5.73684211, 6.21052632], [ 6.68421053, 7.15789474, 7.63157895, 8.10526316], [ 8.57894737, 9.05263158, 9.52631579, 10. ]]) """
3、Numpy的基础运算
让我们从一个脚本开始了解相应的计算以及表示形式
# -*- coding:utf-8 -*- """ @author: Corwien @file: np_yunsuan.py @time: 18/8/26 23:37 """ import numpy as np a = np.array([10, 20, 30, 40]) # array([10, 20, 30, 40]) b = np.arange(4) # array([0, 1, 2, 3])
numpy 的几种基本运算
上述代码中的 a
和 b
是两个属性为 array 也就是矩阵的变量
,而且二者都是1行4列的矩阵, 其中b矩阵中的元素分别是从0到3。 如果我们想要求两个矩阵之间的减法,你可以尝试着输入:
c=a-b # array([10, 19, 28, 37])
通过执行上述脚本,将会得到对应元素相减的结果,即[10,19,28,37]
。 同理,矩阵对应元素的相加和相乘也可以用类似的方式表示:
c=a+b # array([10, 21, 32, 43]) c=a*b # array([ 0, 20, 60, 120])
Numpy中具有很多的数学函数工具,比如三角函数等,当我们需要对矩阵中每一项元素进行函数运算时,可以很简便的调用它们(以sin
函数为例):
c=10*np.sin(a) # array([-5.44021111, 9.12945251, -9.88031624, 7.4511316 ])
上述运算均是建立在一维矩阵
,即只有一行的矩阵上面的计算,如果我们想要对多行多维度的矩阵
进行操作,需要对开始的脚本进行一些修改:
a=np.array([[1,1],[0,1]]) b=np.arange(4).reshape((2,2)) print(a) # array([[1, 1], # [0, 1]]) print(b) # array([[0, 1], # [2, 3]])
此时构造出来的矩阵a和b便是2行2列的,其中 reshape
操作是对矩阵的形状进行重构, 其重构的形状便是括号中给出的数字。 稍显不同的是,Numpy中的矩阵乘法分为两种
, 其一是前文中的对应元素相乘,其二是标准的矩阵乘法运算,即对应行乘对应列得到相应元素:
c_dot = np.dot(a,b) # array([[2, 4], # [2, 3]])
除此之外还有另外的一种关于dot
的表示方法,即:
c_dot_2 = a.dot(b) # array([[2, 4], # [2, 3]])
下面我们将重新定义一个脚本, 来看看关于 sum()
, min()
, max()
的使用:
import numpy as np a=np.random.random((2,4)) print(a) # array([[ 0.94692159, 0.20821798, 0.35339414, 0.2805278 ], # [ 0.04836775, 0.04023552, 0.44091941, 0.21665268]])
因为是随机生成数字, 所以你的结果可能会不一样. 在第二行中对a
的操作是令a
中生成一个2行4列的矩阵,且每一元素均是来自从0到1的随机数。 在这个随机生成的矩阵中,我们可以对元素进行求和以及寻找极值的操作,具体如下:
np.sum(a) # 4.4043622002745959 np.min(a) # 0.23651223533671784 np.max(a) # 0.90438450240606416
对应的便是对矩阵中所有元素进行求和,寻找最小值,寻找最大值的操作。 可以通过print()
函数对相应值进行打印检验。
如果你需要对行或者列进行查找运算,就需要在上述代码中为 axis
进行赋值。 当axis的值为0的时候,将会以列作为查找单元, 当axis的值为1的时候,将会以行作为查找单元。
为了更加清晰,在刚才的例子中我们继续进行查找:
print("a =",a) # a = [[ 0.23651224 0.41900661 0.84869417 0.46456022] # [ 0.60771087 0.9043845 0.36603285 0.55746074]] print("sum =",np.sum(a,axis=1)) # sum = [ 1.96877324 2.43558896] print("min =",np.min(a,axis=0)) # min = [ 0.23651224 0.41900661 0.36603285 0.46456022] print("max =",np.max(a,axis=1)) # max = [ 0.84869417 0.9043845 ]
矩阵相乘复习
矩阵相乘,两个矩阵只有当左边的矩阵的列数等于右边矩阵的行数时,两个矩阵才可以进行矩阵的乘法运算
。 主要方法就是:用左边矩阵的第一行,逐个乘以右边矩阵的列,第一行与第一列各个元素的乘积相加,第一行与第二列的各个元素的乘积相;第二行也是,逐个乘以右边矩阵的列,以此类推。
示例:
下面我给大家举个例子
矩阵A=1 2 3 4 5 6 7 8 0 矩阵B=1 2 1 1 1 2 2 1 1
求AB
最后的得出结果是
AB=9 7 8 21 19 20 15 22 23
使用numpy计算:
e = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 0]]) f = np.array([[1, 2, 1], [1, 1, 2], [2, 1, 1]]) res_dot = np.dot(e, f) print res_dot
打印结果:
[[ 9 7 8] [21 19 20] [15 22 23]]
相关推荐:
以上がPython の Numpy および Pandas モジュールの詳細な紹介 (例付き)の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

PythonコードをSublimeテキストで実行するには、最初にPythonプラグインをインストールし、次に.pyファイルを作成してコードを書き込み、Ctrl Bを押してコードを実行する必要があります。コードを実行すると、出力がコンソールに表示されます。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。
