PythonでWebサイトの一括監視を実装する具体的な解説と事例
この記事では、複数の Web サイトの可用性監視を実装するための非常に実用的な Python スクリプトを、同じニーズを持つ友人が参照できるように説明します
">
一部のサイト用に最近追加されました。サイトの数が増えると、管理の複雑さも増します。「あまりにも多くのユーザーを管理するのは難しい」という言葉があるように、重要なサイトもあれば、あまりにも多くのサイトを管理することも難しいことが分かりました。もちろん、私はさらに多くのサイトを管理しなければなりません。たとえば、1 万年間問題がなかったサイトも、その日突然問題が発生した場合、私は徐々に忘れてしまいます。早急に対応する必要があるため、Web サイトの大小を問わず、まずは統一的な監視を実行する必要があります。少なくとも、そのウェブサイトにアクセスできないことについて話してください。ビジネス側からのフィードバックがあれば、私たちは十分に専門的ではないと思われますので、すぐに報告する必要があります。 Python を使用して複数の Web サイトの可用性監視を実装する方法を参照してください。 スクリプトは次のとおりです:
#!/usr/bin/env python import pickle, os, sys, logging from httplib import HTTPConnection, socket from smtplib import SMTP def email_alert(message, status): fromaddr = 'xxx@163.com' toaddrs = 'xxxx@qq.com' server = SMTP('smtp.163.com:25') server.starttls() server.login('xxxxx', 'xxxx') server.sendmail(fromaddr, toaddrs, 'Subject: %s\r\n%s' % (status, message)) server.quit() def get_site_status(url): response = get_response(url) try: if getattr(response, 'status') == 200: return 'up' except AttributeError: pass return 'down' def get_response(url): try: conn = HTTPConnection(url) conn.request('HEAD', '/') return conn.getresponse() except socket.error: return None except: logging.error('Bad URL:', url) exit(1) def get_headers(url): response = get_response(url) try: return getattr(response, 'getheaders')() except AttributeError: return 'Headers unavailable' def compare_site_status(prev_results): def is_status_changed(url): status = get_site_status(url) friendly_status = '%s is %s' % (url, status) print friendly_status if urlin prev_resultsand prev_results[url] != status: logging.warning(status) email_alert(str(get_headers(url)), friendly_status) prev_results[url] = status return is_status_changed def is_internet_reachable(): if get_site_status('www.baidu.com') == 'down' and get_site_status('www.sohu.com') == 'down': return False return True def load_old_results(file_path): pickledata = {} if os.path.isfile(file_path): picklefile = open(file_path, 'rb') pickledata = pickle.load(picklefile) picklefile.close() return pickledata def store_results(file_path, data): output = open(file_path, 'wb') pickle.dump(data, output) output.close() def main(urls): logging.basicConfig(level=logging.WARNING, filename='checksites.log', format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') pickle_file = 'data.pkl' pickledata = load_old_results(pickle_file) print pickledata if is_internet_reachable(): status_checker = compare_site_status(pickledata) map(status_checker, urls) else: logging.error('Either the world ended or we are not connected to the net.') store_results(pickle_file, pickledata) if __name__ == '__main__': main(sys.argv[1:])
スクリプトの要点の説明:
1. getattr() は Python です。組み込み関数はオブジェクトを受け取り、次のことができます。オブジェクトの属性に従ってオブジェクトの値を返します
2. Compare_site_status() 関数は 2 つの関数を必要とし、1 つはシーケンスです。シーケンス
内の各要素に関数メソッドを適用することです。以上がPythonでWebサイトの一括監視を実装する具体的な解説と事例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SublimeText3 中国語版
中国語版、とても使いやすい

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

ホットトピック











PHPは主に手順プログラミングですが、オブジェクト指向プログラミング(OOP)もサポートしています。 Pythonは、OOP、機能、手続き上のプログラミングなど、さまざまなパラダイムをサポートしています。 PHPはWeb開発に適しており、Pythonはデータ分析や機械学習などのさまざまなアプリケーションに適しています。

PHPはWeb開発と迅速なプロトタイピングに適しており、Pythonはデータサイエンスと機械学習に適しています。 1.PHPは、単純な構文と迅速な開発に適した動的なWeb開発に使用されます。 2。Pythonには簡潔な構文があり、複数のフィールドに適しており、強力なライブラリエコシステムがあります。

PHPは1994年に発信され、Rasmuslerdorfによって開発されました。もともとはウェブサイトの訪問者を追跡するために使用され、サーバー側のスクリプト言語に徐々に進化し、Web開発で広く使用されていました。 Pythonは、1980年代後半にGuidovan Rossumによって開発され、1991年に最初にリリースされました。コードの読みやすさとシンプルさを強調し、科学的コンピューティング、データ分析、その他の分野に適しています。

Pythonは、スムーズな学習曲線と簡潔な構文を備えた初心者により適しています。 JavaScriptは、急な学習曲線と柔軟な構文を備えたフロントエンド開発に適しています。 1。Python構文は直感的で、データサイエンスやバックエンド開発に適しています。 2。JavaScriptは柔軟で、フロントエンドおよびサーバー側のプログラミングで広く使用されています。

PythonコードをSublimeテキストで実行するには、最初にPythonプラグインをインストールし、次に.pyファイルを作成してコードを書き込み、Ctrl Bを押してコードを実行する必要があります。コードを実行すると、出力がコンソールに表示されます。

Golangは、パフォーマンスとスケーラビリティの点でPythonよりも優れています。 1)Golangのコンピレーションタイプの特性と効率的な並行性モデルにより、高い並行性シナリオでうまく機能します。 2)Pythonは解釈された言語として、ゆっくりと実行されますが、Cythonなどのツールを介してパフォーマンスを最適化できます。

Visual Studioコード(VSCODE)でコードを作成するのはシンプルで使いやすいです。 VSCODEをインストールし、プロジェクトの作成、言語の選択、ファイルの作成、コードの書き込み、保存して実行します。 VSCODEの利点には、クロスプラットフォーム、フリーおよびオープンソース、強力な機能、リッチエクステンション、軽量で高速が含まれます。

メモ帳でPythonコードを実行するには、Python実行可能ファイルとNPPEXECプラグインをインストールする必要があります。 Pythonをインストールしてパスを追加した後、nppexecプラグインでコマンド「python」とパラメーター "{current_directory} {file_name}"を構成して、メモ帳のショートカットキー「F6」を介してPythonコードを実行します。
